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2 Gaussian linear regression Gaussian Processes GPs

3 Laplace Approximation

BOOTSTRAI AGGREGATION BAGGING

Recall how frequentism assumes that the randomness comes

from the data sampling process But we have fixed dataset



Bootstrappign synthesizes additional datasets by empling
from thetraining set
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Intro to the Bootstrap by Efron Tibshirani

Sample then optimize Ensemble

Bayesian model randomness in the prior too We can perform

a bagging like procedure but using samples from the prior

to initialize training 5 play
Matthewset al 2017
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NOTE Izmailov et al ICML 2021 finds surprisingly comparableresults

btwn this approach high fidelity Bayesian inference
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Gaussian linear Regression

Is there any way
to model the Bayesian uncertainty explicitly
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The core assumption condition under which you can get this

exactly is that all aspects of our model world are

Gaussian The reason why this is helpful is b c of
the properties of Gaussions

ONCE A GAUSSIAN ALWAYS A GAUSSIAN

Specifically we will start w session problems but we will

use a running example of linear models
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I could just fit a line here but I also want some

uncertainty estimate over alternative lines I could have
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Closed form expression of
the posterior which looks like Gesian
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LAPLACE APPROXIMATION LA

What if my models aren't Gaussian
we want to compute a tractable approx to the true

Bayesian posterior by taking the intractable posterior

dist end fit a simple dist to it
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Laplace approx is old technique w recent resurgence 2021



Normally we'd stophere return

this total opt but Laplace
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LA says that the posterior can be approx by Gaussian
dist where the mean is that I and its variance is

the inverse Hession matrix
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we want to approx w Gaussian First note that
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If OER then the hession A E IR IRM But if
O is weights of NN this could be HUGE e.g GPT
in practice use only last layerO's impose lowfight

LaplaceRedux byDaxberger et al Neurips2021


