Lecture 10: Embodied Al Safety (16-886)

System-Level Anomalies

Instructor: Andrea Bajcsy

Carnegie .
Mellowy Iintent

UIIiVGI‘Sity ROBOTICS LAB

1. Group 1 System: A fixed-base manipulation vision-language-action model (e.g., OpenVLA)
learned via behavior cloning.

2. Group 2 System: An autonomous driving pipeline that predicts human behavior and then
plans robot actions.

3. Group 3 System: An autonomous drone delivery service that uses a perception system, LLM
task-planner, and low-level action policy.

4. Group 4 System: A latent safety filter (like we saw in class: it uses a RGB input, a world model,
and optimization within that model) that shields a behavior-cloned manipulation policy.

System-Level Uncertainties / Anomalies Brainstorm

1) What are the components you would do UQ on? What could be high-uncertainty inputs to these components?
2) Brainstorm an example of a system-level failure induced by each component.
3) How could you identify if a system-level failure has occurred? Think about metrics / methods.

4) How can you improve the closed-loop performance as a whole?

2022

A System-Level View on Out-of-Distribution Data in Robotics

Rohan Sinha, Apoorva Sharma, Somrita Banerjee, Thomas Lew, Rachel Luo,
Spencer M. Richards, Yixiao Sun, Edward Schmerling, Marco Pavone

Abstract— When testing conditions differ from those rep-
resented in training data, so-called out-of-distribution (OOD)
inputs can mar the reliability of learned components in the
modern robot autonomy stack. Therefore, coping with OOD
data is an important challenge on the path towards trustworthy
learning-enabled open-world autonomy. In this paper, we aim to
demystify the topic of OOD data and its associated challenges in
the context of data-driven robotic systems, drawing connections
to emerging paradigms in the ML community that study the
effect of OOD data on learned models in isolation. We argue that
as roboticists, we should reason about the overall system-level
competence of a robot as it operates in OOD conditions. We
highlight key research questions around this system-level view
of OOD problems to guide future research toward safe and

Liahle 1.

lear g Y.

I. INTRODUCTION

Machine learning (ML) systems are poised for widespread
usage in robot autonomy stacks in the near future, driven
by the successes of modern deep learning. For instance,
decision-making algorithms in autonomous vehicles rely on
ML-based perception and prediction models to estimate and
forecast the state of the environment. As we increasingly
rely on ML models to contend with the unstructured and
unpredictable real world in robotics, it is paramount that we
also acknowledge the shortcomings of our models, especially
when we hope to deploy robots alongside humans in safety-
critical settings.

In particular, ML models may behave unreliably on data
that is dissimilar from the training data — inputs commonly
termed out-of-distribution (OOD). This poses a significant
challenge to deploying robots in the open world, e.g., as
autonomous vehicles or home assistance robots, as such robots
must interact with complex environments in conditions we
cannot control or foresee. Coping with OOD inputs remains
a key and largely unsolved challenge on the critical path to
reliable and safe open-world autonomy. However, there is no
generally-agreed-upon precise definition of what makes data
OOD; instead, its definition is often left implicit and varies
between problem formalisms and application contexts.

In this paper, we concretize the often nebulous notion of
the OOD problem in robotics, drawing connections to existing
approaches in the ML community. Critically, we advocate
for a system-level perspective of OOD data in robotics,
which considers the impacts of OOD data on downstream
decision making and leverages components throughout the
full autonomy stack to mitigate negative consequences. To

The authors are with the Autonomous Systems Lab at Stanford
University, Stanford, CA. {rhnsinha, apoorva, somrita,

this end, we present robotics research challenges at three
timescales crucial to deploying reliable open-world autonomy:
(i) real-time decision-making, (ii) episodic interaction with an
environment, and (iii) the data lifecycle as learning-enabled
robots are deployed, evaluated, and retrained.

We note that this paper represents neither an algorith-
mic contribution nor a comprehensive survey of existing
paradigms and literature on OOD topics in machine learning
or robotics; in fact, many of the OOD topics that we
discuss, like runtime-monitoring of perception systems [1] or
heuristic uncertainty quantification of deep neural networks
[2], constitute well-surveyed subfields in their own right.
Rather than survey specific styles of analysis or approaches
tailored towards particular submodules of the autonomy stack,
our goal in this work is to provide an overview of the core
considerations and system-wide challenges that we see as
essential areas of robotics research activity for the coming
years. Our contribution thus is to establish perspective and
context to galvanize more research interest in a topic that we
view as critical to improving the reliability of autonomous
robots.

II. RUNNING EXAMPLES

To better describe the challenges that OOD data creates
in learning-enabled robotic systems, we use the two future
autonomy systems shown in Figure 1 as running examples in
this paper. These conceptual examples highlight the plurality
of applications and design paradigms used to leverage ML
in the design of robotic systems.

Autonomous Drone Delivery Service: Firstly, we consider
an autonomous drone delivering packages in a city. As
illustrated in Figure 1, this robot uses several learning-enabled
components in its autonomy stack. The delivery drone has
to make explainable decisions and meet stringent safety
requirements by regulatory agencies to be deployed among
humans. Crucially, to maintain these reliability requirements
in rare and unforeseen circumstances, the drone needs
mechanisms to detect and manage OOD inputs.

Robotic Manipulators Assisting in the Home: Secondly,
we consider the deployment of robotic manipulators to assist
with various tasks in and around the home, as shown in Figure
1. The manipulators’ tasks are so diverse and unstructured
that we consider a general manipulation policy trained in an
end-to-end fashion in a controlled environment, as commonly
considered in the reinforcement learning (RL) community.
When we deploy these manipulators in people’s homes,

the environments and contexts that these robots encounter
i jahly differ feam the lah ar cimulated i <

/1 [cs.RO] 3 May 2023

This paper has been published in the Proceedings of Robotics: Science and Systems (RSS) 2023.
Please cite the paper as: P. Antonante, S. Veer, K. Leung, X. Weng, L. Carlone and M. Pavone,
“Task-Aware Risk Estimation of Perception Failures for Autonomous Vehicles”, Proceedings of Robotics: Science and Systems (RSS), 2023.

Task-Aware Risk Estimation of
Perception Failures for Autonomous Vehicles

Pasquale Antonante*, Sushant Veer!, Karen Leung!!, Xinshuo Weng', Luca Carlone*, and Marco Pavone'$
* Massachusetts Institute of Technology
T NVIDIA Research
E University of Washington
§ Stanford University

Abstract—Safety and performance are key enablers for au-
tonomous driving: on the one hand we want our autonomous
vehicles (AVs) to be safe, while at the same time their performance
(e.g., comfort or progression) is key to adoption. To effectively
walk the tight-rope between safety and performance, AVs need
to be risk-averse, but not entirely risk-avoidant. To facilitate
safe-yet-performant driving, in this paper, we develop a task-
aware risk estimator that assesses the risk a perception failure
poses to the AV’s motion plan. If the failure has no bearing
on the safety of the AV’s motion plan, then regardless of how
egregious the perception failure is, our task-aware risk estimator
considers the failure to have a low risk; on the other hand, if a
seemingly benign perception failure severely impacts the motion
plan, then our estimator considers it to have a high risk. In
this paper, we propose a task-aware risk estimator to decide
whether a safety maneuver needs to be triggered. To estimate
the task-aware risk, first, we leverage the perception failure —
detected by a perception monitor— to synthesize an alternative
plausible model for the vehicle’s surroundings. The risk due to

AL o _ac_ o ey S aw O We_ N __ 4% _ CCN_a° 99 _®.N_ 4

(a) Task-relevant failure (b)

Fig. 1. TIllustration of task-aware perceptiq
car is the ego vehicle and the blue car is an ex{
example, the non-ego vehicle has not been detf
of the ego vehicle. Then, Fig. 1(a) depicts a

as the ego vehicle’s motion plan will likely c

due to the misdetection. Fig. 1(b) depicts a noy
as the ego vehicle’s motion plan will not lead

vehicle, regardless of the perception failure.

nerformant driving: an examnle higl

Use sensor redundancy + scene generation
technigues to hypothesize plausible scenes and
identify risk of current perception failure

Ground Truth Scene

Sensor Modality 1

Failures Detection and
Identification

Perception System

Sensor Modality 1 Sensor Modality 2

Perceived Scene

Perceived

Plausible

Plausible Scene

Trajectory Prediction

~ Rk Cost

Pr(B > 0)

Risk Estimation

Risk Cost)
Risk-Informed
Perception

Plausible Scene
Generator

Perception Monitor

Task-Aware
Risk Estimator

Failures

L______________l___________.l
i
=

Fig. 2. Task-aware perception monitor overview. The scene contains the ego vehicle (white car) and two non-ego agents (green and blue car). The top row
shows a scenario in which a perception system fails to detect an obstacle (the blue car): one of the two sensor modalities used by the perception system is not
able to detect the obstacle (top-center subfigure), inducing a missing-obstacle failure in the perception output (top-right subfigure). The bottom row depicts
the proposed task-aware perception monitor. The failure detection and identification module detects that sensor 1 is failing (for example using spatio-temporal
information). The plausible scene generator, uses the information about the active failures, generates a plausible scene from the perceived scene. Finally, the
task-aware risk estimator computes the risk associated with the failure. The shaded (green and blue) regions in the bottom-row scenes represent the uncertainty
in the trajectories, as computed by the non-ego trajectory prediction module. The possible trajectories induce a distribution of risk costs for each scene, which
are used to estimate the risk associated with a perception failure. If the risk in the plausible scene is significantly higher than the risk in the perceived scene,
we detect the failure as task relevant. Our detector uses a statistical tool called copula to estimate the tail dependency between the two cost distributions.

p211.02736v4 [cs.RO| 10 Apr 2024

Discovering Closed-Loop Failures of Vision-Based
Controllers via Reachability Analysis

Kaustav Chakraborty!, Somil Bansal!

Abstract—Machine learning driven image-based controllers
allow robotic systems to take intelligent actions based on the
visual feedback from their environment. Understanding when
these controllers might lead to system safety violations is im-
portant for their integration in safety-critical applications and
engineering corrective safety measures for the system. Existing
methods leverage simulation-based testing (or falsification) to find
the failures of vision-based controllers, i.e., the visual inputs that
lead to closed-loop safety violations. However, these techniques
do not scale well to the scenarios involving high-dimensional
and complex visual inputs, such as RGB images. In this work,
we cast the problem of finding closed-loop vision failures as
a Hamilton-Jacobi (HJ) reachability problem. Qur approach
blends simulation-based analysis with HJ reachability methods
to compute an approximation of the backward reachable tube
(BRT) of the system, i.e., the set of unsafe states for the system un-
der vision-based controllers. Utilizing the BRT, we can tractably
and systematically find the system states and corresponding visual
inputs that lead to closed-loop failures. These visual inputs can
be subsequently analyzed to find the input characteristics that
might have caused the failure. Besides its scalability to high-
dimensional visual inputs, an explicit computation of BRT allows
the proposed approach to capture non-trivial system failures that
are difficult to expose via random simulations. We demonstrate
our framework on two case studies involving an RGB image-
based neural network controller for (a) autonomous indoor
navigation, and (b) autonomous aircraft taxiing.

I. INTRODUCTION

ECENT advances in computer vision and deep learning
have enabled autonomous systems to employ vision-

result in a system failure. In addition to reasoning about system
safety, these failure modes might be useful in engineering
corrective measures for the system.

‘While techniques from adversarial learning and robust opti-
mization have been used to find “adversarial” inputs for vision
components, they tend to focus on the component-level safety
analysis, i.e., detecting failures or errors only within the vision
component, ignoring their effect on the downstream system
and the overall robot safety. Indeed, not all vision failures
are equal from the robot safety standpoint. For instance, the
same prediction error by a visual policy for a high-speed drone
can be much more catastrophic near a wall compared to an
empty hallway. Thus, it is imperative that we analyze these
vision modules in conjunction with the robot dynamics. To that
end, formal verification techniques have been used for system-
level (or closed-loop) safety analysis of dynamical systems;
however, their direct application to vision-based controllers
remains impractical due to these controllers’ high-dimensional
and complicated input spaces and the lack of mathematical
models relating the robot state to the visual input at that state.
Simulation-based testing has been a promising approach to
overcoming these challenges; by treating the system as a black
box, one can search for system trajectories that result in a
failure under the vision-based controller. However, this process
(also called falsification) can be highly time-consuming, and
it struggles with exposing long-tail of system failures.

In this work, we cast the problem of finding closed-loop
M £a:1l I als, L i (LI holilis Il

Task-Driven Out-of-Distribution Detection with

Statistical Guarantees for Robot Learning

Alec Farid* Sushant Veer* Anirudha Majumdar
Department of Mechanical and Aerospace Engineering, Princeton University
{afarid, sveer, ani.majumdar}@princeton.edu

Abstract: Our goal is to perform out-of-distribution (OOD) detection, i.e., to de-
tect when a robot is operating in environments that are drawn from a different
distribution than the environments used to train the robot. We leverage Proba-
bly Approximately Correct (PAC)-Bayes theory in order to train a policy with a
guaranteed bound on performance on the training distribution. Our key idea for
OOD detection then relies on the following intuition: violation of the performance
bound on test environments provides evidence that the robot is operating OOD.
We formalize this via statistical techniques based on p-values and concentration
inequalities. The resulting approach (i) provides guaranteed confidence bounds on
OOD detection, and (ii) is task-driven and sensitive only to changes that impact
the robot’s performance. We demonstrate our approach on a simulated example
of grasping objects with unfamiliar poses or shapes. We also present both sim-
ulation and hardware experiments for a drone performing vision-based obstacle
avoidance in unfamiliar environments (including wind disturbances and different
obstacle densities). Our examples demonstrate that we can perform task-driven
OOD detection within just a handful of trials. Comparisons with baselines also
demonstrate the advantages of our approach in terms of providing statistical guar-
antees and being insensitive to task-irrelevant distribution shifts.

Keywords: Out-of-distribution detection, generalization, PAC-Bayes

1 Introduction

Use reachability analysis to discover perception errors
that lead to closed-loop failures

Imagine a drone trained to perform vision-based navigation using a dataset of indoor environments
and deployed in environments with varying wind conditions, obstacle densities, or lighting (Fig. 1).
Similarly, consider a robot arm manipulating a new set of objects or an autonomous vehicle deployed
in a new city. State-of-the-art techniques for learning-based control of robots typically struggle to

o liza tn cninh ast Af dictuihaitinn (OO anvien te Thic lanl Af NN &

lizatinn ic naw

Use statistical generalization theory. Intuition: if the
costs incurred in new environments violate the policy

bound, then the robot is operating OOD

Unpacking Failure Modes of Generative Policies:
Runtime Monitoring of Consistency and Progress

Christopher Agia!, Rohan Sinha!, Jingyun Yang!, Zi-ang Cao!,
Rika Antonova', Marco Pavone!?, Jeannette Bohg!

IStanford University, 2NVIDIA Research

Policy Training & Validation

Policy Deployment
In-Distribution Scenarios Out-of-Distribution Scenarios
(a) Consistency Checking High
n(als) Statistical Temporal
i i I Temporal S
Generative Policy 1t(a|s) € Actlon
i @io Policy Roll Consistency | roir
— —~ olicy Rollout By
= % Sentinel I " o

Successful Rollouts

Calibration LPolicy Runtime Monitor m (b) Online Video QA

Robot Vision Explanation: The
, your 3 14
task is... 1 Language robot is failing

to make progress

ipti Video Model N task) . .
Task Description on as.
Failure Detected Failure Detected Failure Detected Failure Detected
‘o "' . c l% " a
* -

PushT: Action Multimodality Box Closing: Scale Shift Object Covering: Pose Shift Chair Tucking: Dynamics Shift

Figure 1: We present Sentinel, a runtime monitor that detects unknown failures of generative robot policies at
deployment time. Constructing Sentinel requires only a set of successful policy rollouts and a description of the
task, from which it detects diverse failures by monitoring (a) the temporal consistency of action-chunk distributions
generated by the policy and (b) the task progress of the robot(s) through video QA with Vision Language Models.

Abstract: Robot behavior policies trained via imitation learning are prone to failure
under conditions that deviate from their training data. Thus, algorithms that monitor
learned policies at test time and provide early warnings of failure are necessary to fa-
cilitate scalable deployment. We propose Sentinel, a runtime monitoring framework

1) Use temporal consistency of action generations and 2) VLMs to detect task progression failures

Not All Errors Are Made Equal: A Regret Metric for
Detecting System-level Trajectory Prediction Failures

Kensuke Nakamura! Ran Tian? Andrea Bajcsy!
Carnegie Mellon University 2 UC Berkeley
{kensuken, abajcsy}@andrew.cmu.edu, rantian@berkeley.edu

Now...

Abstract: Robot decision-making increasingly relies on data-drj
diction models when operating around people. While these mq
to mispredict in out-of-distribution interactions, only a subset (
rors impact downstream robot performance. We propose chaj
“system-level” prediction failures via the mathematical notion

regret interactions are precisely those in which mispredictions d
loop robot performance. We further introduce a probabilisti
of regret that calibrates failure detection across disparate deplq
and renders regret compatible with reward-based and reward-fj
ative) planners. In simulated autonomous driving interactions

igation interactions deployed on hardware, we showcase that (
failure metric can be used offline to automatically identify cha
loop human-robot interactions that generative human predictors
ners previously struggled with. We further find that the very pi
regret data during predictor fine-tuning is highly predictive of cl
performance improvement. Additionally, fine-tuning with the infd
nificantly smaller high-regret data (23% of deployment data) is g
fine-tuning on the full deployment dataset, indicating a promising
ciently mitigating system-level human-robot interaction failures.

https://cmu-intentlab.github.io/not-all-err

Component-level Failure System-level Failure: Collision System-level Failure: Inefficiency

DB (O BECw 3=

e —— S
(TTTe = D Quy =G BESCw »
S : O B/ B0 PiOm BaCs BACE .3;

[Robot (@D Robot Action === Humans [B Predictions]

Figure 1: All scenarios have component-level prediction failures: mispredicting that parked cars will
turn (left), marooned truck will to move (center), and nearby cars will lane change (right). But, only
the center and right scenarios have system-level prediction failures which impact robot performance.

caused undesirable closed-loop robot behavior: collisions in the center and inefficiency in the right.
The core challenge we address is the automatic detection of such system-level prediction failures.

Our key insight is that the mathematical notion of regret is a rigorous way to identify system-
level prediction failures. High-regret interactions are precisely those in which mispredictions
caused the robot to make a suboptimal decision in hindsight. In Section 4 we formalize this idea
and introduce a probabilistic generalization of regret that no longer depends on explicit reward func-
tions for regret computation, extending its applicability to reward-free planners such as generative
models. In Section 6, we extract system-level failures offline from a dataset of collected deployment
interactions and compare our approach to alternative failure detection methods with a state-of-the-

Keywords: Human-Robot Interaction, Trajectory Prediction, Failure Detection

Planner

=1,(s, Py, C)
)

cost-based planner: 0 is learned cost fn
generative planner: 0 is NN weights

aR

Predictor

:(s,C) »

state history j vw

& context predicted future
actions

Real Human Behavior

/

)
—/
O

&

Which prediction failures “mattered” during deployment interactions?
Can we improve our interaction models over repeated interactions?

—

Real Human Behavior
(s, Py, C)

Y‘%lo . ~ Ty 03

All deployment data

Natural growth over time,..
@ You

Tell me what happened on Tuesday February 27 2024 in Pittsburgh Pennsylvania, USA
174

ChatGPT

| can't provide real-time or the most recent updates, including events from specific dates such as
February 27,2024, in Pittsburgh, Pennsylvania, or anywhere else, due to my last training data
being in April 2023. To find out what happened on that specific date, | recommend checking the
latest news from reliable sources or local news websites for Pittsburgh, such as the Pittsburgh
Post-Gazette or Tribune-Review. You can also look for any updates on social media platforms or

news aggregators for the most current information. 1 - _
0O P D i .
Source: https://twitter.com/djbaskin =

.’.

e m—_—

All deployment data

@ [limited model capacity (esp.
if you want fast inference)

= ——

All deployment data N
Prediction errors —
S —

@ may still waste capacity on
learning irrelevant behaviors

Mis-prediction DOES yields system-level failure Mis-prediction does NOT yield system-level failure

[Both mis-predictions have the same L2 prediction error! }

Farid, Alec, et al. "Task-relevant failure detection for trajectory predictors in autonomous vehicles." CORL 2023. 17

All deployment data

Prediction errors

P¢K‘

“System-level” errors
g

Sinha, Rohan, et al. "A System-Level View on Out-of Distribution Data in Robotics." arXiv preprint (2022).

e —————

P e e T T e e T T T T,

level” interaction errors?

Q2) Value this data holds for
incrementally improving?

e e

All deployment data

Prediction errors

Py K‘

—————

“System-level” errors
g

Idea 1

Regret precisely characterizes the degree to which
prediction errors Py degraded robot performance 7y

Nakamura, Tian, Bajcsy. “Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures”. CoRL 2024.

Regret

[\ robot’s reward w/ parameters

II;%X[RR(GR, atvtiv g C)| — RR(@", at'vim, 3,)

\§
Y
T observed human behavior, joint
best robot decision state, scene context

in hindsight

This mis-prediction would cause high regret! This would not — robot would still do the same thing.

max[Rg(a" , "] -R§(—) max[Rg(a” ,_S)] -RG(— S)

\ \
Y Y

In hindsight, should have slowed down! => High regret In hindsight, would have still done

=> Low regret

24

