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SequentialDecision Making b c the first half of the
class is all about safety w r t decisions
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our goal is to

mathematically model this decision making process

quantify the goodness of decisions

compute these good decisions

This is where sequential decision making i.e controltheory

will provide us with a framework for answeringthese

what makes sequential decision making hard
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IAI outcomes of taking actions can be stochastic or unknown
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One framework that ion help us describethese phenomenons are

state space reprepresentations
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describesthe minimal necessary characteristicsof a system

Tig position in x y plane of 2D vehicle orientation speed
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inputs that we choose each instance in time
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output observation by Ll of in the AI lit

outputs that are actually measurable typicallythrough sensor

positionthrough GPS ing obsRGBcamera

I initially we assume y x perfect observability But it's
not the case in general it's a majorsafety challenge

Tintamics transition howthe systemevolves over time
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Optimal Decision Making

decisions
Objective

AI Alignment
minimize

unqrtaain.SIsystem
dynamics stateconstraints

safe ctrl other
constraints Cfto

bounds

An optimization problem but it has a temporal aspect to it

and we want sequence of decisions that are optimal



more formally in this class we will see

Discrete time Continuous time
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of popular cost function also called objective reward
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Howtosolve6
Each method listed below has its pros cons BUT there

are MANY solutionstrategies we can try
Calculusof variations converts constrained opt unconstrained

via Lagrange multipliers

ModelPredictive control MPC like but usually in discretetime
and it replan in recedinghorizon

Dynamic Programming
leverages the recursive structure in opt
control problems to compute policy

Reinforcementlearning samefoundations as but user sim
fun approx data toscale

feature unknown dynamics



Dynamic Programming

We will study the method of dynamic programming to solve
optimal control problems Dynamil programming relies on the

Prickle of openly developed by Richard Bellman
around 1958 when he was working the RANDCorporation

Since then dynamic prog has been used in CS operations

research controls robotics and many other domains

We can intuit dynamic programming via an example

DRONE rescue during California wildfires

need to find shortest path from
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What's
your strategy to solve this

ID work backwards
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2 7 8 2 Now youlook one timestip
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There are a few key propertiesofDynamil programming

DP gives you the optimalpath from ate to node
You get intermediate sol for free
Globally optimal solution

DP gives computational gains over foud sim

let's understand underlying mathematical principle DP relies on

Eiple of optimality in an optimalsequenceof decisions or choices
each subsequence must also be optimal Thus if we take any state
alongthe opt state trajectory then the remaining subtrajectory is
also optimal



In the example earlier if we take any intermediate nodealong
the optimal route we still take optimal route to destination
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let'swrite this principle down mathematically
we want to see ÉÉ Lcr Ue l Xt

value
function
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The beauty is this lets us decompose decisionmakingproblems into

smaller subproblem and solve recursively pointwise option one ctrl

VC is typically hard to solve in closed form for most

dynamical systems but for some you can 2
Exercise offline Linear QuadraticRegulator ER
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