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Robustifying Safety
So far we have assumed that our dynamicalsystem

perfectly evolves via x ̅ f xin with no uncertainty

This isn't realistic for many real world scenarios e.g friction
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There are two ways to model uncertainty
9probabilistic uncertainty i e I haveobserved data

2 non derministic uncertainty i e I haveminimaladditionalinfo

Howshould we handle the design of our safety filter
analysis to handle uncertainty
Typically we do this via modelling another input that influences

the state evolution
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In robust safety we take a non deterministic view of
uncertainty and assume that d ED is chosen from some

bounded set and we want our robot to be Best to the
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This is the set of all starting statesfrom which no matter

the controller's effort the disturbance can pushsystem into F
The way we will formulate an optimal control problem whose

solution represents this unsafe set will be via
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Our game formulation could look something like this
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Here the robot u is trying to maximizethe objective JC

and the other player d is minimizing In other words the

robot is optimizing the worst case objective

Importance of information Patterns
When we have 2 players reacting to each other their optimal

strategy will depend on what information they each have accessto

Example Supposethere are 2 boxes each with 2 slots

each slot contains prize money Player A You wants to

maximize prizemoney while Player B competition organizer

wants to minimize player t's prizemoney
Box 1 Box 2

2,000 10 I 6,000

51 52 51 52
mm

u e Box 1 Boxz de slot 1 slot 2

PlayerA
Youchoose B player they

choose slott



Suppose PlayerA goes first
A lmax
to
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pox

2

B min
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Box 1 Box 2

2,000 10 I 6,000

51 52 51 52

Best outcome for A is to pick Box 1 get Rew 10

Mathematiially
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Suppose Player B goes first
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Best strategy for player B is topick slot 1 and pay PlayerAa reward of 2 000
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This phenomenon we just saw can be stated via

minimax inequality VonNeumann1928 equalwhen
A B are compactconvexsets t

max min J a b min maxJCais f see
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In dynamic games the outcome depends on END and
hioN each player decidefair inputs

now justtalkedaboutthis
OPENLOOP INFO PATTERN order ofplay
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41 42
max time O T

a de lares entire signal differ diffa time 01T

In he islets to
seehis

JO distbtwn agents
OVERLY PESSIMISTIC



let's swap the order of play again but we are playing
over continuous signals or scenes of decisions
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CLOSED LOOP INFORMATION PATTERNS

The above formulation is not suitable formanypracticalsystems
We would like the controller u to ADAPT over time as system

evolves But respeit the fact that any time t we only

have information up to time t

We can model this by solving for feedbeckpolices
V x t max min J x tall Tda
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this is openloff NOTE for this illustrativeexample

since a and d are 2 separateagents
the state space is X Xn x Xd
and policiesmapfromwhere Bothplayers
are to actions

In XaXa u Id XaXa d

Bringing this back to safety analysis are just have to choose

a objective function whit lets us remember the closest we ever got
to failure
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we can apply the game theoretic principle of optimality
called the Tenet of transition by Rufus Isaacs

If play proceeds from one position state to a

second and U is thought of as known to the
second then it is determined at the first by
demanding that players optimize i e make

minimax the increment of U during the transition

ml discrete time
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Applying this to the continuous or discrete time zero sum

safety critical games we formulated above we get
two key equations that allow us to extend dynamic
programming tools to the robust dynamilgame setting
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Continuous Time

Problem Dynamic Programming Bankup
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Discrete Time

Problem Dynamic Programming Bankup
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