Last Time Computing safety fieters HJ Reachability Lecture 4 EAIS SP'25 Andrea Bajesy

This Time: I recap + hands-on exercise I code demo! I robust safety

Last time, we formalized the public of safety satisfaction as an optimal control problem:

Continuous-time Sefety Problem

$$V(x_{t}t) := \max \min_{u \in t \in U_{t}} \min_{t \in [t_{t}, t^{T}]} \int_{t}^{t} f(x_{t}t) \int_{t}^{t} f(x_{t$$

Getting our safety monitor (i.e. the unsafe set boundary) By design, the zero-sublevel set of V(.,.) encodes our <u>unsafe set</u>!

$$u_{nsafe} \text{ set} = BRT(t) = \left\{ x: V(x_{1}t) < 0 \right\}$$

Getting safety-preserving policy

We can also compute the <u>optimal safety policy</u> via the optimal value function too! $\frac{c_{\text{ott. time:}}}{u_{\text{sofe}}}$ $\frac{u_{\text{sofe}}(x,t) = \arg\max_{x} \frac{\partial V}{\partial x} \cdot f(x,u)$ $\frac{discr. time}{u_{t}}$ $u_{t}^{\text{sofe}}(x_{t}) = \arg\max_{u_{t}\in\mathcal{U}} V_{t+1}(f(x_{t},u_{t}))$ Safety Filter]

 $u(x) = \begin{cases} \pi^{nom} & \text{if } V > 0 \\ u^{safe} & \text{if } V \approx 0 \end{cases}$

[Exercise]: compute a Backwards Reahable Tube (i.e. unsafe set) We will operate in discrete state + time to Luild intuition:

$$\frac{V_{t}(x)}{V_{t}(x)} = \min \left\{ \frac{U(x)}{U(x)}, \max \left(\frac{U(x, u)}{U(x)} \right) \right\}$$

$$V_{t}(x) = \frac{U(x)}{U(x)}$$

We initialize $V_T(x) = l(x)$. Compute $V_{T-1}(x)$ and $V_{T-2}(x)$.

Solution:

+	+	+	+	+	+
+	-	-	-	_	
+	+	+	+	+	+
++	++	++	++	++	++
+++	+++	+++	1++	+++	+++
++++	++++	+ +++	+++	+++	++-1-1

$$V_{\tau}(x_{\tau}) = l(x)$$

 $V_{T-2}(x_{T-2})$

 $V_{T-2}(x_m) = \min \{ ++ \} - \{ -\} = -$

Code Demo (in MATLAB solver helperOC + levelSetToolbox)

• system: $\dot{x} = (v)\cos\theta$ $\dot{y} = v \sin\theta$ $\dot{\theta} = u \rightarrow u \in [-0.5, 0.5]$ Dubind cor

· computed unsafe set (i.e. backwards reachable tube):

() Way easier as an engineer to specify failure set F than to specify BRT. Thats why we want to compute BRT given F!

Robustifying Safety So far, we have assured that our dynamical system perfectly evolves via $\dot{x} = f(x, u)$ with no uncertainty. This isn't realistic for many real-world scenarios (e.g. friction!) -i, P(X_{t+1}(x_{t1}) x++1 ν_t γ_t $\int_{\chi_{+}}^{\chi_{+}}$ Probabilistic_ No uncertainty Non-deterministic There are two ways to model uncertainty: 1) probabilistic uncertainty (i.e. "I have observed data") i) non-derministic uncertainty (i.e "I have minimal additional info.") How should we handle the design of our safety filter (+ analysis) to handle uncertainty? Typically, we do this via modelling another" in put" that influences the state evolution:

In robust safety, we take a non-deterministic view of
uncertainty and assume that
$$d \in D$$
 is chosen from some
bounded set and we want our robot to be ROBUST to the
WORST POSSIBLE sequence of $dis!$

ROBUST BACKWARDS REACHABLE TUBE (BRT) of a set $F \subset X$
and dynamical system $\dot{x} = f(x, u, d)$ is:
Ar all things the node could do there is constaining the
distributionce could do
BPT(t):= $\begin{cases} x \in X : \forall u \in r \in [t]_t, \exists d \in r \in D_t^T, \\ x \in (t) \in D_t^T, \end{cases}$

This is the set of all starting states from which no mathem
the controller's effort, the disturbance can push system into F .

The way we will formulate an "optimel control" problem whose

solution represents this unsafe set will be via: