
Updating Safety Online

Instructor: Andrea Bajcsy

Some slides courtesy of Somil Bansal

Lecture 8: Embodied AI Safety (16-886)

i n t e n t
R O B O T I C S L A B

So far, have studied offline safety (pre-)computations

Grid-based Solver
Neural Approx:

Reinforcement Learning
Neural Approx:

Self-Supervised Learning

Offline Safety Analysis (i.e., Before Deployment)

𝑉 𝑥, 𝑡 , 𝜋(𝑥, 𝑡)

Safety monitor
(sign[V] tells you safe or unsafe)

Safety policy
(tries hardest to stay away from failure)

Specification
Failure Set (ℱ)

Disturbance
Model (𝐷)

Dynamics
Model (f)

Online Use:

Requires adaptation of reachable sets & safety controller online!

New Safety
Constraints

Dynamics
Changes

?

Environment
Uncertainty

Control Authority
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations

Requires adaptation of reachable sets & safety controller online!

New Safety
Constraints

Dynamics
Changes

?

Environment
Uncertainty

Control Authority
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations

Assumptions
1. Static environments*
2. Occupancy perception is

perfect within FOV

* For theoretical guarantees

Safety Challenges in Unknown Environments

Quickly updating the safe set based on new observations

Computing a safe set despite unseen obstacles

Computing a safe set for arbitrary environment exposures

[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm

Starting

[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm

Starting

Any planner can be used
within the red boundary

Safety controller intervenes at
the red boundary

𝑝
·

𝑥 = 𝑣𝑐𝑜𝑠(𝜃) + 𝑑𝑥

𝑝
·

𝑦 = 𝑣𝑠𝑖𝑛(𝜃) + 𝑑𝑦

𝑣
·

= 𝑎

𝜃
·

= 𝜔

Obstacles

Free space

𝑝
·

𝑥 = 𝑣𝑐𝑜𝑠(𝜃) + 𝑑𝑥

𝑝
·

𝑦 = 𝑣𝑠𝑖𝑛(𝜃) + 𝑑𝑦

𝑣
·

= 𝑎

𝜃
·

= 𝜔

ℒ = {𝑥: 𝑙(𝑥) ≤ 0}

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡)

Failure States

Value Function

ℒ = {𝑥: 𝑙(𝑥) ≤ 0}

Failure States

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡)

Value Function

𝑯 𝑥, 𝛻𝑉 = max
𝑢

min
𝑑

 𝛻𝑉 𝑡, 𝑥 ⊤𝑓(𝑥, 𝑢, 𝑑)u∗(𝑥, 𝑡) = argmax
𝒖

min
𝑑

𝛻𝑉 𝑡, 𝑥 ⊤ 𝑓(𝑥, 𝑢, 𝑑)

𝑉(0, 𝑥) = 𝑙(𝑥)

Value Function

Dynamic Programming

HamiltonianOptimal Control

Backward Reachable Tube

𝐵𝑅𝑇 = {𝑥: 𝑉(𝑇, 𝑥) ≤ 0}

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝑯(𝑥, 𝛻𝑉), 𝑙(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡)

HJI-VI

𝐻 𝑥, 𝛻𝑉 = 𝑚𝑎𝑥
𝑢

𝑚𝑖𝑛
𝑑

 𝛻𝑉 𝑡, 𝑥 ⊤𝑓(𝑥, 𝑢, 𝑑)u∗(𝑥, 𝑡) = argmax
𝒖

min
𝑑

𝛻𝑉 𝑡, 𝑥 ⊤ 𝑓(𝑥, 𝑢, 𝑑)

𝑉(0, 𝑥) = 𝑙(𝑥)

Value Function

Dynamic Programming

HamiltonianOptimal Control

Backward Reachable Tube

𝐵𝑅𝑇 = {𝑥: 𝑉(𝑇, 𝑥) ≤ 0}

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(0, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡)

HJI-VI

Computation Time for BRS (seconds)

Full HJ Reachability

51.7

[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm

Starting

Warm Starting Reachability Computation

𝑉(0, 𝑥) = 𝑙𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑜𝑙𝑑(𝑥) − 𝑉(𝑡, 𝑥) = 0

ℱ𝑜𝑙𝑑

ℱ𝑜𝑙𝑑 ≔ {𝑥: 𝑙𝑜𝑙𝑑 𝑥 ≤ 0}Initial Failure Set:

Initial Safety Computation:

𝑉𝑜𝑙𝑑(𝑥)

𝑡 → ∞

Warm Starting Reachability Computation

𝑉𝑜𝑙𝑑(𝑥)

Robot moves
& gets new
observations!

ℱ𝑛𝑒𝑤

𝑉(0, 𝑥) = 𝑉𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑛𝑒𝑤(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(0, 𝑥) = 𝑙𝑛𝑒𝑤(𝑥)

𝑉𝑛𝑒𝑤(𝑥)

𝑡 → ∞

Warm Starting Reachability Computation

ℱ𝑛𝑒𝑤 ≔ {𝑥: 𝑙𝑛𝑒𝑤 𝑥 ≤ 0}New Failure Set:

Safety Computation:

𝑉(0, 𝑥) = 𝑉𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑛𝑒𝑤(𝑥) − 𝑉(𝑡, 𝑥) = 0

Computation time for BRT (s)

Full HJ Reachability Warm-started Reachability

51.7 12.5

𝑉𝑛𝑒𝑤(𝑥)

𝑡 → ∞

Warm Starting Reachability Computation

Lemma (Informal): The safe set
obtained by warm-starting is an

under-approximation of the true safe set
obtained by solving full HJI-VI.

We can use warm-starting to ensure safety for the
vehicle while being computationally efficient!

[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm

Starting

Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT

Low value
(unsafe)

High
value
(safe)

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Blue states are the new
free states! No longer

part of failure set

Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

This is the initial set of
states from which we

compute HJI-VI

Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT

Local Update Value Propagation

𝑆𝑙𝑖𝑐𝑒: 𝜃 =
𝜋

2𝑆𝑙𝑖𝑐𝑒: 𝜃 = 0

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑 𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update Value Propagation

In MATLAB!

𝑆𝑙𝑖𝑐𝑒: 𝜃 =
𝜋

2𝑆𝑙𝑖𝑐𝑒: 𝜃 = 0

Computation Time for BRS (seconds)

Full HJ Reachability Local Update Method

51.7 0.9

Simulation Results

[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm

Starting

Perception ControlPlanning

Learning-Enabled Planner

Autonomy Stack [1] LB-WayPtNav

[1] Bansal et al., 2019

No Safety Controller

LB-WayPtNav

Perception Planning

Learning-Enabled Planner

ControlSafety Verifier

Autonomy StackSafe

Perception

Mapping

Planning

Learning-Enabled Planner

ControlSafety Verifier

Autonomy StackLB-WayPtNav Safe

With Safety Controller

Requires adaptation of reachable sets & safety controller online!

New Safety
Constraints

Dynamics
Changes

?

Environment
Uncertainty

Control Authority
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations

Requires adaptation of reachable sets & safety controller online!

New Safety
Constraints

Dynamics
Changes

?

Environment
Uncertainty

Control Authority
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations

Parameter-Conditioned Safety Value Function

𝑥

𝑡

𝛽

𝑉𝜃(𝑥, 𝑡;)

𝜃

𝛽

Training
Batch

{(𝑥𝑖 , 𝑡𝑖 , __)}𝛽𝑖

Forward Pass

Back Prop

Loss function

𝐿(𝜃) =

PDE Violation Error (

Initial Condition

𝛽)
(𝛽)+𝜆

Value parameterized by uncertain parameters

Parameter-conditioned safe sets can be used to adapt safety
online corresponding to new conditions (with a simple query).

Worst-case Safety
Confidence-parameterized Safety Confidence-parameterized Safety

(unmodelled human)(modelled human)

𝑏(𝜷)

lo hi

𝑏(𝜷)

lo hi

Worst-case
safety

Robot aborts merge!

Conf.-param
safety

Robot completes merge!

Similar experimental results

Worst-case Safety Confidence-aware Safety

Evaluation with real traffic data

[Tian*, Sun*, Bajcsy*, et al, ICRA 2022]

Example: Rocket Landing on Floating Pad

ሷ𝑦 = cos 𝜃 𝑢1 − sin 𝜃 𝑢2 + 𝑑𝑦

ሷ𝑧 = sin 𝜃 𝑢1 − cos 𝜃 𝑢2 − 𝑔

ሷ𝜃 = 𝛼𝑢1 + 𝑑𝜃

Dynamics
(6D system)

Controls lateral
and longitudinal
forces (𝑢1, 𝑢2)

Parameterized
Target Set ℒ(𝛽) = {(𝑦, 𝑧) ∶ |𝑦 − 𝛽| ≤ 2𝑙, 0 ≤ 𝑧 ≤ 2𝑙}

𝑙

Parameterized Reachability

Warm Starting Local Updates to Safety Value

Further Reading & Resources

Adapting via Gaussian Processes

	Slide 1: Updating Safety Online
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Assumptions
	Slide 8: Safety Challenges in Unknown Environments
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Warm Starting Reachability Computation
	Slide 23: Warm Starting Reachability Computation
	Slide 24
	Slide 25
	Slide 26
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Simulation Results
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 73

