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But at deployment time the robot may experience new situations
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An Efficient Reachability-Based Framework for Provably Safe
Autonomous Navigation in Unknown Environments

Andrea Bajcsy*, Somil Bansal*, Eli Bronstein, Varun Tolani, Claire J. Tomlin

Abstract— Real-world autonomous vehicles often operate in
a priori unknown environments. Since most of these systems are
safety-critical, it is important to ensure they operate safely in
the face of environment uncertainty, such as unseen obstacles.
Current safety analysis tools enable autonomous systems to
reason about safety given full information about the state of
the environment a priori. However, these tools do not scale
well to scenarios where the environment is being sensed in
real time, such as during navigation tasks. In this work,
we propose a novel, real-time safety analysis method based
on Hamilton-Jacobi reachability that provides strong safety
guarantees despite environment uncertainty. Our safety method
is planner-agnostic and provides guarantees for a variety of
mapping sensors. We demonstrate our approach in simulation
and in hardware to provide safety guarantees around a state-
of-the-art vision-based, learning-based planner. Videos of our
approach and experiments are available on the project website'.

I. INTRODUCTION

Autonomous vehicles operating in the real world must
navigate through a priori unknown environments using on-
board, limited-range sensors. As a vehicle makes progress
towards a goal and receives new sensor information about the
environment, rigorous safety analysis is critical to ensure that
the system’s behavior does not lead to dangerous collisions.
In order to provide such safety guarantees for real vehicles,
any analysis should take into account multiple sources of
uncertainty, such as modelling error, external disturbances,
and unknown parts of the environment.

A variety of mechanisms have been proposed to ensure
robustness to modeling error and external disturbances [24],
[16], [34]. Additionally, safety guarantees for systems using

Unsensed Environ. & Sensed Obstacles
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Fig. 1. Overview: We consider the problem of safe navigation from an
initial state to a goal state in an a priori unknown environment. Our approach
treats the unsensed environment as an obstacle, and uses a HJ reachability
framework to compute a safe controller for the vehicle, which is updated in
real-time as the vehicle explores the environment. We show an application
of our approach on a Turtlebot using a vision-based planner. When the robot
is at risk of colliding, the safe controller (u*) keep the system safe.

external disturbances while minimally interfering with goal-
driven behavior. Second, real-time safety assurances need to
be provided as new environment information is acquired,
which requires approximations that are both computationally
efficient and not overly conservative. Moreover, this safety
analysis should be applicable to a wide variety of real-world
sensors, planners, and vehicles.

In this paper, we propose a safety framework that can over-
come these challenges for autonomous vehicles operating in
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Safety Challenges in Unknown Environments

Computing a safe set despite unseen obstacles ! .

Computing a safe set for arbitrary environment exposures : .
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Quickly updating the safe set based on new observations
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Value Function

V(T,x) = rrjlrix r%n tggég [(X, (t))

Dynamic Programming
7

av
min {— + H(x,VV),l(x) = V(t, x)} =

_ > ot
Backward Reachable Tube HJI-VI
V(0,x) = I(x)
BRT = {x:V(T,x) < 0} L
Optimal Control Hamiltonian

u”(x,t) = argmax mdin vV (t,x)" f(x,u,d) H(x,VV) = max min PV (¢, x)Tf(x, 1, d)
u



Computation Time for BRS (seconds)

Full HJ Reachability
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Warm Starting Reachability Computation

i

Initial Failure Set: Fog = {x:1,;4(x) < 0}

Initial Safety Computation:

aV
min {E + H(x,VV),l,14(x) — V(¢ x)} =0

V(0,x) = loa(x)



Warm Starting Reachability Computation

Voia (x)

Robot moves
& gets new
observations!




Warm Starting Reachability Computation

New Failure Set:  F,.y, == {x: L., (x) < 0}

Safety Computation:

av
min {E + H(x,VV), L., (x) = V(t, x)} =0

V(0,x) = V()




Warm Starting Reachability Computation

av
min {E + H(x,VV), Lo (x) = V (¢, x)} =0

V(0,x) = Voia(x)
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Computation time for BRT (s)
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An Efficient Reachability-Based Framework for Provably Safe
Autonomous Navigation in Unknown Environments

Andrea Bajcsy*, Somil Bansal*, Eli Bronstein, Varun Tolani, Claire J. Tomlin

Abstract— Real-world autonomous vehicles often operate in
a priori unknown environments. Since most of these systems are
safety-critical, it is important to ensure they operate safely in
the face of environment uncertainty, such as unseen obstacles.
Current safety analysis tools enable autonomous systems to
reason about safety given full information about the state of
the environment a priori. However, these tools do not scale
well to scenarios where the environment is being sensed in
real time, such as during navigation tasks. In this work,
we propose a novel, real-time safety analysis method based
on Hamilton-Jacobi reachability that provides strong safety
guarantees despite environment uncertainty. Qur safety method
is planner-agnostic and provides guarantees for a variety of
mapping sensors. We demonstrate our approach in simulation
and in hardware to provide safety guarantees around a state-
of-the-art vision-based, learning-based planner. Videos of our
approach and experiments are available on the project website'.

I. INTRODUCTION

Autonomous vehicles operating in the real world must
navigate through a priori unknown environments using on-
board, limited-range sensors. As a vehicle makes progress
towards a goal and receives new sensor information about the
environment, rigorous safety analysis is critical to ensure that
the system’s behavior does not lead to dangerous collisions.
In order to provide such safety guarantees for real vehicles,
any analysis should take into account multiple sources of
uncertainty, such as modelling error, external disturbances,
and unknown parts of the environment.

A variety of mechanisms have been proposed to ensure
robustness to modeling error and external disturbances [24],
[16], [34]. Additionally, safety guarantees for systems using
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of our approach on a Turtlebot using a vision-haSed planner. When the robot
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external disturbances while minimally interfering with goal-
driven behavior. Second, real-time safety assurances need to
be provided as new environment information is acquired,
which requires approximations that are both computationally
efficient and not overly conservative. Moreover, this safety
analysis should be applicable to a wide variety of real-world
sensors, planners, and vehicles.

In this paper, we propose a safety framework that can over-
come these challenges for autonomous vehicles operating in
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Local Update of the BRT

Vora < V:(0,0)
Q < new free states and neighbors
while Q is not empty do:

Vupdate < update Vy1q for AT

AV = ||Vupdate - Vold||

Q < remove states with AV =0

Q < add neighbors

Vold o Vupdate
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Local Update of the BRT

Vora < V:(0,0)
Q < new free states and neighbors
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Local Update of the BRT

Voia < V¢(0,Q)
Q < new [ree states and neighbors
while Q is not empty do:

Vupdate < update V14 for AT
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Blue states are the new
free states! No longer
art of failure set




Local Update of the BRT
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Computation Time for BRS (seconds)

Full HJ Reachability Local Update Method




Simulation Results

Metric

Planner

. RRT 45.688 | 26.290
Average Compute Time (s)
Spline 51.723 | 12.489
_ RRT 0.0 1.112 0.517
% Over-conservative States
Spline 0.0 0.474 0.506

Metric

Planner

. RRT 21.145 6.075
Average Compute Time (s)
Spline 25.318 3.789
, RRT 0.0 0.032 | 0.290
% Over-conservative States
Spline 0.0 0.024 | 0.240
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But at deployment time the robot may experience new situations
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Safety Assurances for Human-Robot Interaction via
Confidence-aware Game-theoretic Human Models

Ran Tian*, Liting Sun*, Andrea Bajcsy*, Masayoshi Tomizuka, and Anca D. Dragan

Abstract— An outstanding challenge with safety methods for
human-robot interaction is reducing their conservatism while
maintaining robustness to variations in human behavior. In
this work, we propose that robots use confidence-aware game-
theoretic models of human behavior when assessing the safety of
a human-robot interaction. By treating the influence between
the human and robot as well as the human’s rationality as
unobserved latent states, we succinctly infer the degree to
which a human is following the game-theoretic interaction
model. We leverage this model to restrict the set of feasible
human controls during safety verification, enabling the robot
to confidently modulate the conservatism of its safety monitor
online. Evaluations in simulated human-robot scenarios and
ablation studies demonstrate that imbuing safety monitors with
confidence-aware game-theoretic models enables both safe and
efficient human-robot interaction. Moreover, evaluations with
real traffic data show that our safety monitor is less conservative
than traditional safety methods in real human driving scenarios.

I. INTRODUCTION

We focus on maintaining safety in highly dynamic human-
robot interactions, such as when an autonomous car merges
into a roundabout with an oncoming human-driven vehicle
(Fig. 1). While planning approaches incorporate safety con-
straints in diverse ways [1], safety monitors have emerged as
a desirable additional layer of safety. These methods allow
the planner to guide the robot, but compute when imminent
collisions would happen and take over control to steer the
robot away from danger.

Crucial to these safety monitors is a method for detecting
imminent collisions. Typically, this is based on worst-case

Full BRT : Bayesian BRT (high conf.) ' Bayesian BRT (low conf.)
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Fig. 1: Robot car (white) merges into a round-about with a
nearby human-driven car (orange). (left) Human accommo-
dates for robot, but robot is overly conservative and protects
against the full backwards reachable tube (BRT). (center)
Our Bayesian BRT infers how the human is influenced by
the robot and shrinks the set of unsafe states. (right) When
the human does not behave according to the model, the robot
detects this and automatically reverts to the full BRT.

fits the human, and use this to adapt the restriction; at the
extreme, when the model is completely wrong, our monitor
should go back to protecting against any human controls.
Two questions still remain: what human model to use,
and how to detect when it is wrong. While models that treat
the human as acting in isolation and ignoring the robot are
popular [4]-[6], they are still very conservative: if the planner
tries to merge in front of the human, the safety monitor
based on these “human-in-isolation” models would intervene
to prevent it, because it has no confidence in the human
reacting to the robot and making space—also known as the
“frozen robot” problem [71. For this reason. prior work in




— %

lo hi

Confidence-parameterized Safety Confidence-parameterized Safety
Worst-case Safety (modelled human) (unmodelled human)




Robot aborts merge!

Evaluation with real traffic data
Worst-case
safety

Conf.-param
safety

_ _ Confidence-aware Safety
modeled 28.3 24.26 + 6.16

noisy 432 [0 | 14.83 + 4.22

0
unmodeled ' 4.8 0.13 + 0.08

Similar experimental results [Tian®, Sun*, Bajcsy*, et al, ICRA 2022]



Parameter-Conditioned Reachable Sets for Updating Safety Assurances
Online

Javier Borquez®,

Abstract— Hamilton-Jacobi (HJ) reachability analysis is a
powerful tool for analyzing the safety of autonomous systems.
However, the provided safety assurances are often predicated
on the assumption that once deployed, the system or its
environment does not evolve. Online, however, an autonomous
systemm might experience changes in system dynamics, control
authority, external disturbances, and/or the surrounding en-
vironment, requiring updated safety assurances. Rather than
restarting the safety analysis from scratch, which can be time-
consuming and often intractable to perform online, we propose
to compute parameter-conditioned reachable sets. Assuming
expected system and environment changes can be parameter-
ized, we treat these parameters as virtual states in the system
and leverage recent advances in high-dimensional reachability
analysis to solve the corresponding reachability problem offline.
This results in a family of reachable sets that is parameterized
by the environment and system factors. Online, as these factors
change, the system can simply query the corresponding safety
function from this family to ensure system safety, enabling
a real-time update of the safety assurances. Through various
simulation studies, we demonstrate the capability of our ap-
proach in maintaining system safety despite the system and
environment evolution.

I. INTRODUCTION

Ensuring the safe operation of autonomous systems is
crucial for their successful deployment in safety-critical do-
mains such as self-driving vehicles, unmanned aerial vehicle
mobility, and human-robot interaction. These applications
often require autonomous systems to operate in situations
where environmental factors might change online. For ex-
ample, a UAV might experience stronger wind during its

Kensuke Nakamura Somil Bansal®

However, safety assurances are typically provided for given
environment conditions and system dynamics. Safe motion
planning methods [13]-[18] combine the above safety assur-
ance methods with online trajectory planning to ensure safety
in a priori unknown environments. However, these methods
typically impose restrictive assumptions on the system dy-
namics or the environment to ensure safety. Furthermore,
they often do not consider changes in system dynamics,
such as changes in control authority or disturbance bounds,
and require a motion planning algorithm that can operate in
real-time, which itself is challenging to obtain for nonlinear
systems.

Another approach for providing safety assurances for
dynamical systems is via Hamilton-Jacobi (HJ) Reachability
analysis [19], [20]. Its advantages include compatibility with
general nonlinear system dynamics, formal treatment of
bounded disturbances, and the ability to deal with state and
input constraints [10]. In reachability analysis, the system
safety is characterized by Backward Reachable Tube (BRT).
BRT is the set of states such that the system trajectories
that start from this set will eventually reach the given target
set despite the worst-case disturbance (or an exogenous,
adversarial input more generally). If the target set consists
of those states that are known to be unsafe, then the BRT
contains states which are potentially unsafe and should
therefore be avoided. Along with the BRT, the reachability
analysis also provides a safety controller for the system
to stay outside the BRT. Given the utility of reachablhty
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Further Reading & Resources

Adapting via Gaussian Processes

A General Safety Framework for Learning-Based
Control in Uncertain Robotic Systems

Jaime F. Fisac’, Anayo K. Akametalu

, Melanie N. Zeilinger

, Shahab Kaynama

, Jeremy Gillula*,

and Claire J. Tomlin

Abstract—The proven efficacy of learning-based control
i to robotic sys-

strongly i their

tems operating in the physical world. However,

ing correct operation during the learning process is cur-
rently an unresolved issue, which is of vital importance
in safety-critical systems. We propose a general safety

k based on Hami meth-
ods that can work in con]unctlon wnh an arbitrary learn-
ing algorithm. The melhod explolks approximate knowledge

of the system

tion while mlnlmally mler'enng with the learning process.

We further il that refines
the salety analysis as lhe system acqulres new evidence,
initial conser pprop while
through ' “ The

result is a least-restrictive, safety-preserving control law
that intervenes only when the computed safety guaramees

require it, or

in light of new observations. We pvove lheore(lcal salety

Fig. 1. quadrotor learning a vertical flight policy under

Parameterized Reachability

Safety Assurances for Human-Robot Interaction via
Confidence-aware Game-theoretic Human Models

Ran Tian*, Liting Sun*, Andrea Bajcsy*, Masayoshi Tomizuka, and Anca D. Dragan
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Warm Starting

Local Updates to Safety Value

Reachability-Based Safety Guarantees using
Efficient Initializations

Sylvia L. Herbert, Shromona Ghosh, Somil Bansal, and Claire J. Tomlin

Abs Hamilton-Jacobi-I (HJD hability analysis
is a powerful tool for analyzing the safety of autonemous
systems. This analysis is computationally intensive and typically
performed offline. Online, however, the autonomous system may
experience changes in system dynamics, external disturbances,
and/or the surrounding environment, requiring updated safety
guarantees. Rather than restarting the safety analysis, we
propose a method of “warm start” reanhahlh which usm
a defired Gt ically the }
solution). By starting wn.h an H.ll fllnctlnn that is closer to the
solution than the d may take
fewer iterations.

In this paper we prove that warm-starting will result in
guaranteed conservative solutions by over-approximating the
states that must be avoided to maintain safety. We additi

for i dating the ion as new information
is acquired. There are some methods for speeding up this
putation using d position [8], and there are other
efficient approaches that require simplified problem formu-
lations and/or dynamics [9-15]. The methods in [9, 16-19],
can handle more complex dynamics, but may be less scalable
or unable to represent complex sets. Efficient reachability
analysis remains challenging for general system dynamics
and problem setups.
Warm-starting in the optimization community involves
using a initialization that acts as a “best guess” of the
solution, and therefore may converge in fewer iterations (if

prove that for many common problem formulations, warm»
starting will result in exact solutions. We demonstrate our

2 can be achieved). Recent work applied this
warm-starting idea to create a “discounted reachability”
for infinite-time horizon pmh]ems [20, 21]. By

method on several ilk with a double i

An Efficient Reachability-Based Framework for Provably Safe
Autonomous Navigation in Unknown Environments

Andrea Bajcsy*, Somil Bansal*, Eli Bronstein, Varun Tolani, Claire J. Tomlin

Abstract— Real-world autonomous vehicles often operate in Unsensed Environ. & Sensed Obstacles
a priori unknown environments. Since most of these systems are
safety-critical, it is important to ensure they operate safely in
the face of environment uncertainty, such as unseen obstacles.
Current safety analysis tools enable autonomous systems to
reason about safety given full information about the state of
the environment a priori. However, these tools do not scale
well to scenarios where the environment is being sensed in
real time, such as during navigation tasks. In this work,

Parameter-Conditioned Reachable Sets for Updating Safety Assurances
Online

Javier Borquez', Kensuke Nakamura®, Somil Bansal'

Abstract— Hamilton-Jacobi (HJ) reachability analysis is a
powerful tool for analyzing the safety of autonomous syslems
the provided safety are often di

However, safety assurances are typically provided for given
envuanmem condmons and system dynamics. Safe motion

on the mumpmm that once deployed, the system or its
environment does not evolve. Online, however, an autonomous
system might experience changes in system dynamics, control
authority, external disturbances, and/or the surrounding en-
vironment, requiring updated safety assurances. Rather than
mhrting the safety analysis from scratch, which can be time-
consuming and often mlraclahle tn perform online, we propose
to sets. A

expected system and environment changes can be parameter-
ized, we treat these parameters as virtual states in the system
and leverage recent advances in high-dimensional reachability
analysis to solve the corresponding reachability problem offline.
This results in a family of hable sets that is ized
by the environment and system factors. Online. as these factors

g s [13]-[18] combine the above safety assur-
ance methods wu.h online trajectory planning to ensure safety
in a priori unknown environments. However, these methods
typically impose restrictive assumptions on the system dy-
namics or the environment to ensure safety. Furthermore,
they often do not consider changes in system dynamics,
such as changes in control authority or disturbance bounds,
and require a motion planning algorithm that can operate in
real-time, which itself is challenging to obtain for nonlinear
systems.

Another approach for providing safety assurances for
dynamical systems is via Hamilton-Jacobi (HJ) Reachabilit:

One Filter to Deploy Them All: Robust Safety for
Quadrupedal Navigation in Unknown Environments
Albert Lin'?, Shuang Peng', and Somil Bansal®

University of Southern California  Stanford University
Project Website: https://sia-lab-git.github.io/One_Filter_to_Deploy_Them_All

Fig. 1: Our proposed obser

sed (OCR) safety-fil

we propose a novel, real-time safety analysis method based
on Hamilton-Jacobi hability that provides strong safety
guaranlm despite envmmmenl uncertainty. Our safety method
is pl gnostic and p for a variety of
mapping sensors. We demonstrate our approach in simulation
and in hardware to provide safety guarantees around a state-
of-the-art vision-based, learning-based planner. Videos of our
approach and experiments are available on the project website'.

Robot POV [

Fig. 1. Overview: We consider the problem of safe navigation from an

and alen an_a_maore nractical evamnle with a 10D auadeonter

usine a_discount factor this for con-

different controllers in diverse settings without a priori access to the controllers or environments. A trained OCR value network
governs the switch between nominal and filtered control using an onboard LiDAR sensor. The framework successfully safeguards

a variety of high-level planners, including (a) learning-based, (c, f, k) model-based, d, g, h, i, j) human teleoperated, and
(¢) naive planners, on top of different low-level locomotion policies, including (a, f, i, j, k) leaming-based and (b, ¢, d, €, g, h)
model-based policies. Safety is mmnlzmcd despite (a, b, ¢) narrow comdnn (d, i, j) rough terrains, (e, k) dynamic obstacles,
(f) external di and (h) colli king human

Abstract—As learning-based methods for legged robots rapidly
grow in popularity, it is important that we can provide safety as-
surances efficiently across different and
Existino works either relv on a nriori of the environ.

Index rmu—um.uan Jacob reachability analysis, safety fil-
tering, adaptive saf fe legged
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