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So far, have studied offline safety (pre-)computations

Grid-based Solver
Neural Approx: 

Reinforcement Learning
Neural Approx: 

Self-Supervised Learning

Offline Safety Analysis (i.e., Before Deployment) 

𝑉 𝑥, 𝑡 , 𝜋(𝑥, 𝑡)

Safety monitor 
(sign[V] tells you safe or unsafe)

Safety policy 
(tries hardest to stay away from failure)

Specification
Failure Set ( ℱ )

Disturbance 
Model ( 𝐷 )

Dynamics 
Model ( f )

Online Use:



Requires adaptation of reachable sets & safety controller online!

New Safety 
Constraints

Dynamics 
Changes

? 

Environment 
Uncertainty

Control Authority 
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations
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Assumptions
1. Static environments*
2. Occupancy perception is 

perfect within FOV

* For theoretical guarantees



Safety Challenges in Unknown Environments

Quickly updating the safe set based on new observations

Computing a safe set despite unseen obstacles 

Computing a safe set for arbitrary environment exposures 
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Any planner can be used 
within the red boundary



Safety controller intervenes at 
the red boundary



𝑝
·

𝑥 = 𝑣𝑐𝑜𝑠(𝜃) + 𝑑𝑥

𝑝
·

𝑦 = 𝑣𝑠𝑖𝑛(𝜃) + 𝑑𝑦

𝑣
·

= 𝑎

𝜃
·

= 𝜔



Obstacles

Free space

𝑝
·

𝑥 = 𝑣𝑐𝑜𝑠(𝜃) + 𝑑𝑥

𝑝
·

𝑦 = 𝑣𝑠𝑖𝑛(𝜃) + 𝑑𝑦

𝑣
·

= 𝑎

𝜃
·

= 𝜔





ℒ = {𝑥: 𝑙(𝑥) ≤ 0}

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡 )

Failure States

Value Function



ℒ = {𝑥: 𝑙(𝑥) ≤ 0}

Failure States

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡 )

Value Function



𝑯 𝑥, 𝛻𝑉 = max
𝑢

min
𝑑

 𝛻𝑉 𝑡, 𝑥 ⊤𝑓(𝑥, 𝑢, 𝑑)u∗(𝑥, 𝑡) = argmax
𝒖

min
𝑑

𝛻𝑉 𝑡, 𝑥 ⊤ 𝑓(𝑥, 𝑢, 𝑑)

𝑉(0, 𝑥) = 𝑙(𝑥)

Value Function

Dynamic Programming

HamiltonianOptimal Control

Backward Reachable Tube

𝐵𝑅𝑇 = {𝑥: 𝑉(𝑇, 𝑥) ≤ 0}

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝑯(𝑥, 𝛻𝑉), 𝑙(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(𝑇, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡 )

HJI-VI



𝐻 𝑥, 𝛻𝑉 = 𝑚𝑎𝑥
𝑢

𝑚𝑖𝑛
𝑑

 𝛻𝑉 𝑡, 𝑥 ⊤𝑓(𝑥, 𝑢, 𝑑)u∗(𝑥, 𝑡) = argmax
𝒖

min
𝑑

𝛻𝑉 𝑡, 𝑥 ⊤ 𝑓(𝑥, 𝑢, 𝑑)

𝑉(0, 𝑥) = 𝑙(𝑥)

Value Function

Dynamic Programming

HamiltonianOptimal Control

Backward Reachable Tube

𝐵𝑅𝑇 = {𝑥: 𝑉(𝑇, 𝑥) ≤ 0}

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(0, 𝑥) = max
𝜋𝑢

min
𝜋𝑑

𝑚𝑖𝑛
𝑡∈ 0,𝑇

𝑙(𝐱𝑥,𝑡
𝐮,𝐝 𝑡 )

HJI-VI

Computation Time for BRS (seconds)

Full HJ Reachability

51.7
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Warm Starting Reachability Computation

𝑉(0, 𝑥) = 𝑙𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑜𝑙𝑑(𝑥) − 𝑉(𝑡, 𝑥) = 0

ℱ𝑜𝑙𝑑

ℱ𝑜𝑙𝑑 ≔ {𝑥: 𝑙𝑜𝑙𝑑 𝑥 ≤ 0}Initial Failure Set: 

Initial Safety Computation: 

𝑉𝑜𝑙𝑑(𝑥)

𝑡 → ∞



Warm Starting Reachability Computation

𝑉𝑜𝑙𝑑(𝑥)

Robot moves 
&  gets new 
observations!

ℱ𝑛𝑒𝑤



𝑉(0, 𝑥) = 𝑉𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑛𝑒𝑤(𝑥) − 𝑉(𝑡, 𝑥) = 0

𝑉(0, 𝑥) = 𝑙𝑛𝑒𝑤(𝑥)

𝑉𝑛𝑒𝑤(𝑥)

𝑡 → ∞

Warm Starting Reachability Computation

ℱ𝑛𝑒𝑤 ≔ {𝑥: 𝑙𝑛𝑒𝑤 𝑥 ≤ 0}New Failure Set: 

Safety Computation: 



𝑉(0, 𝑥) = 𝑉𝑜𝑙𝑑(𝑥)

𝑚𝑖𝑛
𝜕𝑉

𝜕𝑡
+ 𝐻(𝑥, 𝛻𝑉), 𝑙𝑛𝑒𝑤(𝑥) − 𝑉(𝑡, 𝑥) = 0

Computation time for BRT (s)

Full HJ Reachability Warm-started Reachability

51.7 12.5

𝑉𝑛𝑒𝑤(𝑥)

𝑡 → ∞

Warm Starting Reachability Computation



Lemma (Informal): The safe set 
obtained by warm-starting is an 

under-approximation of the true safe set 
obtained by solving full HJI-VI. 

We can use warm-starting to ensure safety for the 
vehicle while being computationally efficient!
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Local Update of the BRT

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT



Low value 
(unsafe)

High 
value 
(safe)

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Blue states are the new 
free states! No longer 

part of failure set

Local Update of the BRT



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

This is the initial set of 
states from which we 

compute HJI-VI

Local Update of the BRT



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update of the BRT



Local Update Value Propagation

𝑆𝑙𝑖𝑐𝑒:  𝜃 =
𝜋

2𝑆𝑙𝑖𝑐𝑒:  𝜃 = 0

while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒



while 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do:

𝑄 ← 𝑛𝑒𝑤 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉𝑜𝑙𝑑  𝑓𝑜𝑟 ∆𝑇

∆𝑉 = | 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑉𝑜𝑙𝑑 |

𝑄 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑉 = 0

𝑄 ← 𝑎𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑉𝑜𝑙𝑑 ← 𝑉𝑡(0, 𝑄)

𝑉𝑜𝑙𝑑 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒

Local Update Value Propagation

In MATLAB!

𝑆𝑙𝑖𝑐𝑒:  𝜃 =
𝜋

2𝑆𝑙𝑖𝑐𝑒:  𝜃 = 0

Computation Time for BRS (seconds)

Full HJ Reachability Local Update Method

51.7 0.9



Simulation Results



[Bansal et al., 2019]

Local Updates Safety Filtering
Setup & Warm 

Starting



Perception ControlPlanning

Learning-Enabled Planner

Autonomy Stack [1] LB-WayPtNav

[1] Bansal et al., 2019



No Safety Controller



LB-WayPtNav

Perception Planning

Learning-Enabled Planner

ControlSafety Verifier 

Autonomy StackSafe



Perception

Mapping

Planning

Learning-Enabled Planner

ControlSafety Verifier 

Autonomy StackLB-WayPtNav Safe



With Safety Controller



Requires adaptation of reachable sets & safety controller online!

New Safety 
Constraints

Dynamics 
Changes

? 

Environment 
Uncertainty

Control Authority 
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations



Requires adaptation of reachable sets & safety controller online!

New Safety 
Constraints

Dynamics 
Changes

? 

Environment 
Uncertainty

Control Authority 
Changes

Learning
Uncertainty

But at deployment time the robot may experience new situations



Parameter-Conditioned Safety Value Function

𝑥

𝑡

𝛽

𝑉𝜃(𝑥, 𝑡; )

𝜃

𝛽

Training 
Batch

{(𝑥𝑖 , 𝑡𝑖 , __)}𝛽𝑖

Forward Pass

Back Prop

Loss function

𝐿(𝜃) =

PDE Violation Error (

Initial Condition

𝛽 )
( 𝛽 )+𝜆

Value parameterized by uncertain parameters

Parameter-conditioned safe sets can be used to adapt safety 
online corresponding to new conditions (with a simple query).





Worst-case Safety
Confidence-parameterized Safety Confidence-parameterized Safety

(unmodelled human)(modelled human)

𝑏(𝜷)

lo hi

𝑏(𝜷)

lo hi



Worst-case 
safety

Robot aborts merge!

Conf.-param 
safety

Robot completes merge!

Similar experimental results

Worst-case Safety Confidence-aware Safety

Evaluation with real traffic data

[Tian*, Sun*, Bajcsy*, et al, ICRA 2022]





Example: Rocket Landing on Floating Pad

ሷ𝑦 = cos 𝜃 𝑢1 − sin 𝜃 𝑢2 + 𝑑𝑦  

ሷ𝑧 = sin 𝜃 𝑢1 − cos 𝜃 𝑢2 − 𝑔

ሷ𝜃 = 𝛼𝑢1 + 𝑑𝜃

Dynamics 
(6D system)

Controls lateral 
and longitudinal 
forces (𝑢1, 𝑢2) 

Parameterized 
Target Set ℒ(𝛽)  =  {(𝑦, 𝑧) ∶  |𝑦 −  𝛽|  ≤  2𝑙, 0 ≤  𝑧 ≤  2𝑙}

𝑙



Parameterized Reachability

Warm Starting Local Updates to Safety Value

Further Reading & Resources

Adapting via Gaussian Processes
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