

Last Time:

□ updating safety online

lecture 9

FAIS 8'26

Andrea Bajcsy

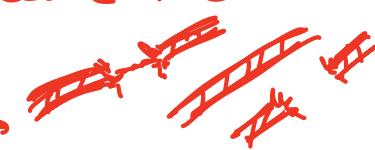
This time:

□ latent-space safety

Why Latent States?

So far, we have assumed a hand-designed representation of state, $x \in \mathcal{X}$, that we can perfectly observe. But this is never true in practice! we need to deal with real obs, $o_t \in \mathcal{O}$, coming from sensor.

Ok, well the traditional thing to do is to design a state estimator: $p(x_t | o_{0:t}, a_{0:t})$ which gives us a (distribution) over the current state given a history of the robot's observations and actions.

- ⚠ BUT what *is* the representation of x ? Recall the problem of cutting a rope -- what is x ? 
- ⚠ cutting an onion -- what is x ?
- ⚠ On top of this, I can't hand-design a dynamics model for such a complicated interaction!

IDEA: let's learn the state representation and dynamics directly from $\mathcal{D} = \{(o_{0:t}^i, a_{0:t}^i)\}_{i=1}^N$, observation-action data:

$$\mathcal{D} = \left\{ \begin{array}{c} \text{INPUTS} \\ \boxed{\text{U}} \quad \boxed{\text{D}} \quad \boxed{\text{H}} \\ o_{0:t} \\ \text{"images of smile"} \end{array}, \begin{array}{c} \text{OUTPUTS} \\ \text{down-down-down} \\ a_{0:t} \\ \text{"muscle twitches"} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} z \in \mathcal{Z}, f(z_t, a_t) \\ \text{"latent state"} \\ \text{"face state"} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{f(z, a)} \\ \text{"model of how you make expressions"} \end{array} \right\}$$

GOAL: with learned (z, f) maybe we can extend all our state ctrl math to compute safety $(\pi(z), v(z))$!

ROADMAP

denoted by WM_s

1. "world models" (i.e. how to learn z, f jointly)

2. safe ctrl in WM_s

→ specifying safety constraints

→ policy and value learning

→ runtime filtering of visuomotor policies

+ what is uniquely hard in safety!

3. open challenges

PART 1 - WORLD MODELS

world model (intuitive) : given current observation and action(s), predict future outcome.

It can mean many things:

- Markovian state-based model (today!)
- Video diffusion / flow matching model

✳ note: some communities call text-to-img or text-to-video WM_s. I usually mean an embodied action-conditioned model!

↳ see: [1] Mei et. al. "Video Gen. Models in Robotics", 2026.

 [2] Li et. al. "Survey on WM_s in Embodied AI", 2025.

Markovian State-based Models

Assume the future evolution of the agent's environment only depends on the state variable z_t at time t and action a_t → we have been making this assumption too!

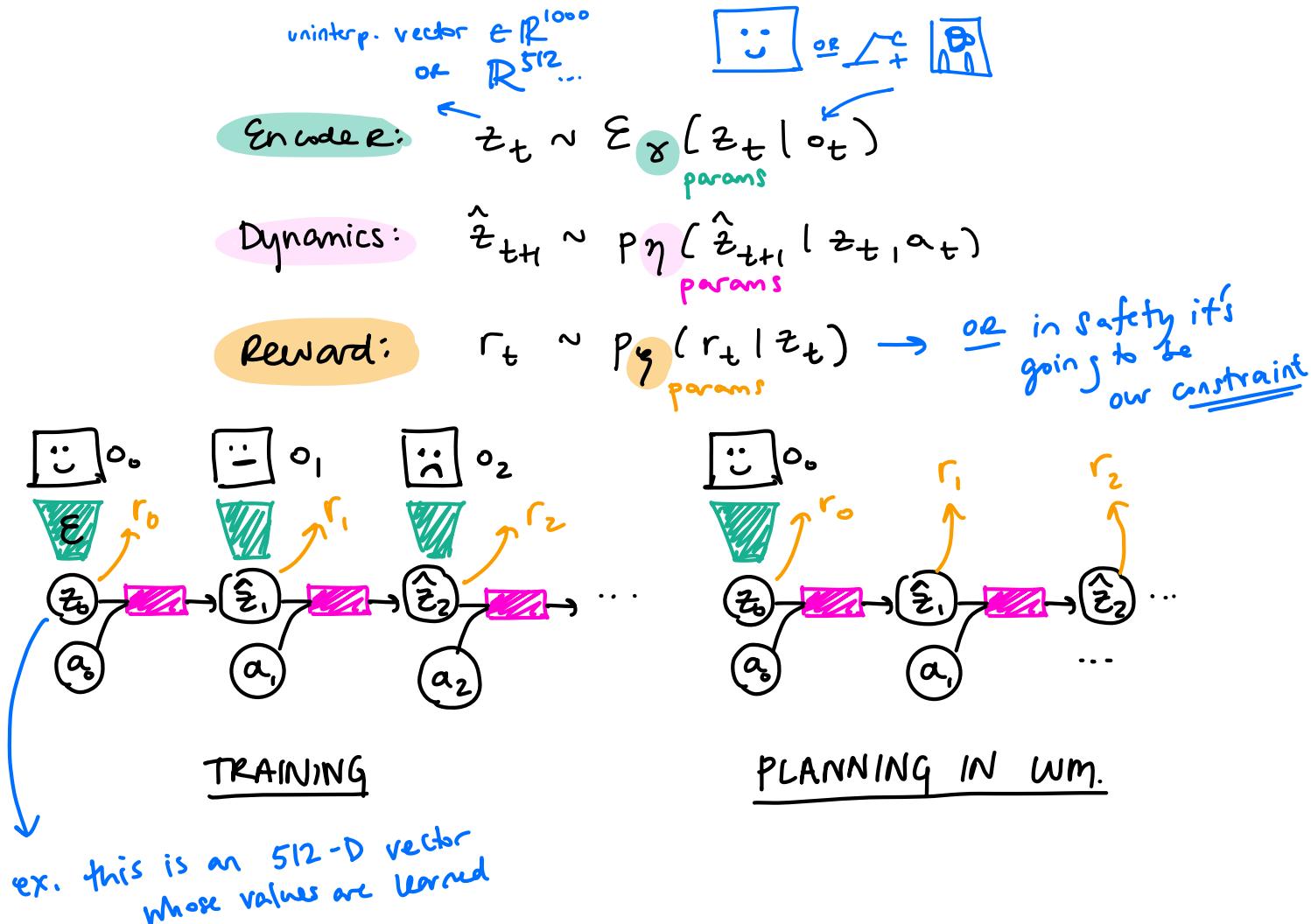
↓
this is def'n
of Markovian

$z_{t+1} \sim p_{\gamma}(z_{t+1} | z_t, a_t)$ vs. $p(z_{t+1} | z_{0:t}, a_{0:t})$

↳ learned model parameters Non-Markovian

! Video models do not explicitly model Markovian state - they directly transform patches of pixels into future pixels / video frames.

Markovian world models consist of 2-3 ingredients:



Three things matter in ML: DATA, MODEL ARCH, LOSS FUNC.!

(A) DATA: The only data we assume is:

$$(o_t, a_t, o_{t+1}) \rightarrow \text{ex. } \begin{matrix} \text{:) } \\ \text{:- } \\ \text{:(} \end{matrix} \quad a=D \quad a=D \quad a=D \dots$$

Q: What is our dream "composition" of this data? i.e. what data distrib. do we want?

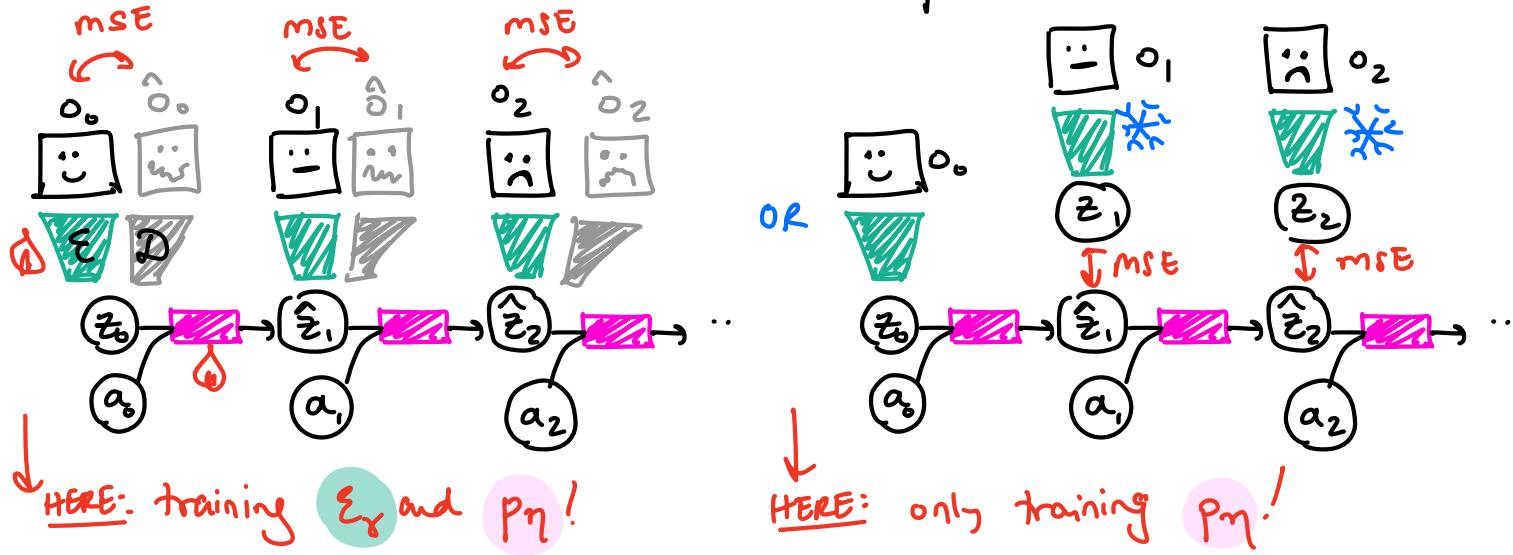
A: High coverage! want for every o_t , want to see diverse a_t and o_{t+1} 's so we can learn to predict consequences. It's a system ID problem! Only expert data here is less helpful.

(B) MODEL ARCH: Foundational works use RNN or RSSMs to model $p_\eta(z_{t+1}|z_t, a_t)$ (Planet, Dreamer v1 - v4)
 This is so the latent state had a notion of memory

→ Recent works freeze $\mathcal{E}(z_t|o_t)$ with pre-trained encoder like DINOv2/v3 and only train $p(z_{t+1}|z_t, a_t)$ [DINO-WM, Zhou et.al 2025]

(c) LOSS FUNCTION: usually trained to minimize error b/w. predicted and "true" next state, either in latent space

or in reconstructed observation space



PART 2: Safe Ctrl. in Latent Spaces

OK, so now we have our ingredients for control!

Encoder: $z_t \sim \mathcal{E}_\theta(z_t|o_t)$

Dynamics: $\hat{z}_{t+1} \sim p_\eta(\hat{z}_{t+1}|z_t, a_t)$

We now need to tackle 3 things:

SAFETY SPEC., POLICY & VALUE LEARN, FILTERING

(A) SAFETY SPEC: in traditional safety, we defined

$$F = \{x: l(x) < 0\}$$

where $l(x)$ was signed distance function.

simple idea: let's learn the l function

$$l(x) = \sqrt{x^2 + y^2} - R$$

Constraint: $l_t = l(z_t)$

where $l_t < 0 \Leftrightarrow z_t \in F$ & $l_t > 0 \Leftrightarrow z_t \notin F$.

Q How do we train this? What data + assumptions do we need?

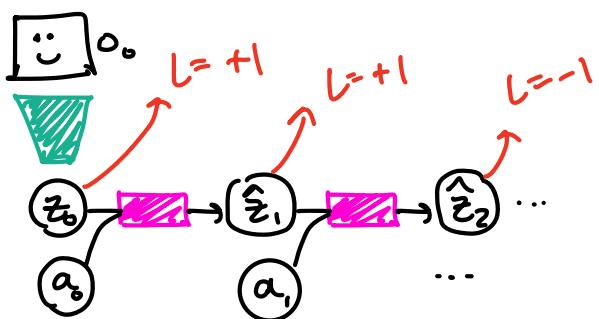
A Assume failure is observable in observation o_t .

o_t I can see you are sad! vs. o_t Your smile is unobservable!

A Label the WM dataset $\mathcal{D} = \{(o_t, a_t, o_{t+1})\}$ with $(o_t, l_t = +1)$ if looks safe & $(o_t, l_t = -1)$ if failure

Then, train $l(z_t)$ as Binary classifier on z :

$$(o_t, l_t) \sim \mathcal{D}_{\text{train}} \Rightarrow \mathcal{E}(o_t) = z_t \rightarrow l(z_t) = l_t$$



PLANNING IN WM.

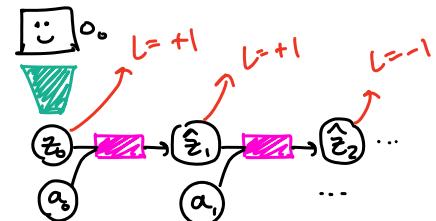
Q why don't we train $l(z)$ like a proper signed-dist. in the latent space?

A hard to assign per-frame real-valued labels indicating how close the robot is to failure!

(B) POLICY & VALUE LEARN: In theory, we can run our favorite reachability RL solver, BUT now entirely in the WM's imagination! No need for expensive real-world rollouts / interactions!

Latent HJB Equation:

$$V(z) = \min \{ l(z), \max_{a \in A} \mathbb{E}_{\substack{z' \sim p_{\gamma}(\cdot | z_t, a_t)}} [V(z')] \}$$



!! note: latent dyns. $p_{\gamma}(\cdot | z_t, a_t)$ are usually stochastic — need to handle this expectation carefully (open research Q! :)

!! Need to take care w/ how we do "resets" in the WM when doing RL.

If we just randomly sample an initial z_0 to start a rollout from (i.e. to get $z_{0:T}$ via simulating outcomes of $a_{0:T}$ starting from z_0 using $p_{\gamma}(z_{t+1} | z_t, a_t)$) we get noise! To stay on data manifold, do:

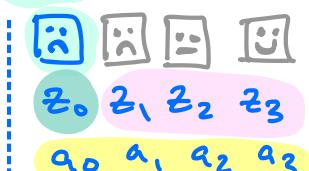
(1) sample image: $o_0 \sim D_{\text{wm}}^{\text{Train}}$

ex:

(2) encode: $z_0 \sim \mathcal{E}_g(z_0 | o_0)$

$\mathcal{E}(\text{frowny face}) \rightarrow z_0$

(3) simulate $a_{0:T}$ in WM: $z_{t+1} \sim p_{\gamma}(\cdot | z_t, a_t)$



(C) DEPLOYMENT-TIME FILTERING

Great! So as we know, we eventually compute a safety policy & safety value function, but now it operates on the latent encodings of high-D obs:

$$\pi^{\text{safe}}(z), v^{\text{safe}}(z) = \arg \max_a Q^{\text{safe}}(z, a)$$

where we get a "fresh" z_t @ each real timestep
encoding the current observation: $\mathcal{E}(o_t) \rightarrow z_t$

⊕ Let's look @ demo of this in action!

⚠ PROBLEM: least-restrictive safety filter can sometimes compromise task performance!

IDEA: what if we did optimization-based filtering (like CBF's do)?

$$\begin{aligned} \text{⊗ } a^* &= \arg \min_{a \in A} \|a - \pi^{\text{nom}}(o)\|_2^2 && \text{ex. Diffusion Policy predicts } a^{\text{nom}} \\ \text{s.t. } Q^{\text{safe}}(z, a) &\geq \alpha(Q^{\text{safe}}(z, \pi^{\text{safe}}(z))) && \mathcal{E}(o) \end{aligned}$$

⊗ Recall how Q^{safe} was trained with signal from the BINARY CLASSIFIER $\ell(z)$. What could go wrong with Q^{safe} when I try to use it in ⊗ ?

Ⓐ Near discrete jumps @ boundary \Rightarrow can't evaluate how current actions change long-term safety

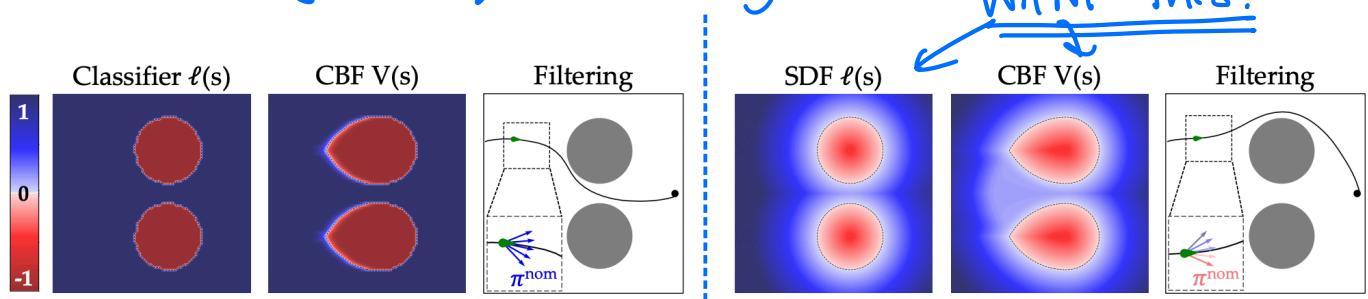


Figure 2: **CBFs as a Function of the Margin Function.** Even with a perfect model, a classifier-based $\ell(s)$ yields a CBF with poor signal during action filtering (left). A smooth margin function provides a rich signal for the CBF to evaluate alternative actions (right).

Initial remedy: gradient penalty when training $\ell(z)$ regularizes its Lipschitz constant (Nakamura et al, 2025) (i.e. penalize norm of the gradient of $\ell(z)$: $\|\nabla_z \ell(z)\|$)

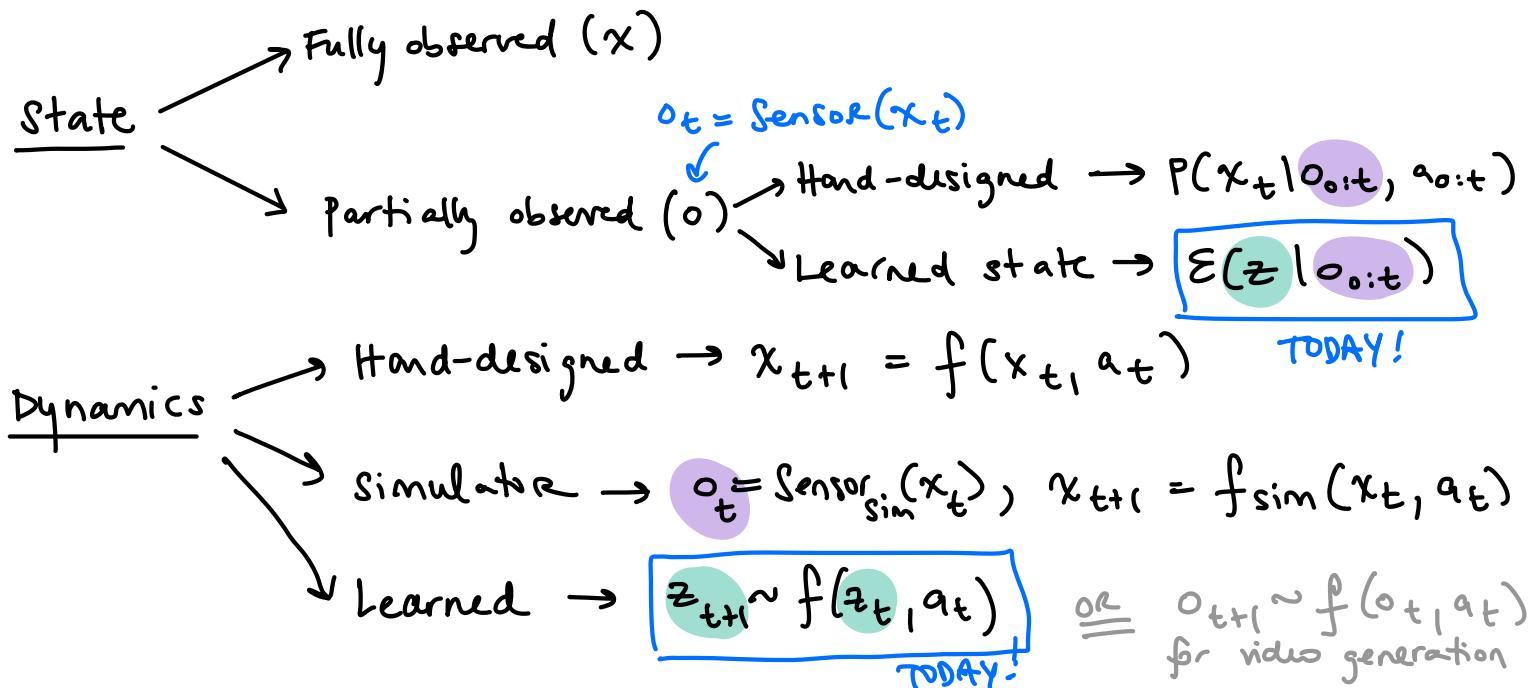
Q Any other problems? This one is subtle: related to the computation lecture...

A Distribution mismatch b/w $\pi^{\text{safe}}(\text{train})$ & $\pi^{\text{nom}}(\text{deploy})$!
Since $Q^{\text{safe}}(z, a)$ is trained only w/ data from π^{safe} , then it is only reliable when evaluating $a \sim \pi^{\text{safe}}$ but NOT any other actions (like $a \sim \pi^{\text{nom}}$)!

Initial remedy [Nakamura, L4DC 2026]: when training $Q^{\text{safe}}(z, a)$, mix rollouts from π^{safe} and π^{nom} that you will shield @ deploym.

⊕ video demo of filter working better!

SUMMARY



OPEN CHALLENGES

(A bit in) Reading Day

- (0) What "structure" do we need in latent-space?
- (1) How to train effectively in high-D z -space directly in o -space.
- (2) How to generalize framework to video generation.
- (3) How to adapt safety behavior to context
- (4) How to deal w/ finite data coverage (hallucinations)
- (5) How to predict unsafe events w/ minimal unsafe data

→ (A bit in) lecture: Semantic Safety

lecture: controlling "in-distribution"