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Uncertainty Quantification for predictive models
So far we have talked length about

safe decisionmaking control
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But as we have pushed into the frontier we have seen many
more components or models that our decisionmaking
depends on being driven by data
These are all predictive models
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ex wouldmodels which predict next latent state
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let's abstract these models their architectures etc so we

can unify our discussion



In general prediction problems look something like this

predictor Y
prediction
diagnosis 5 silk healthy

feature reltor
I health measurements bloodpressfe

future y pos of human

me
ftp n i ihistory x y states of person

wait what we want is to know how certain is f 1
about its prediction These predictive models will interact with

downstream designmaking modulism e.g doctor who gives you

drugs robotplanner which looks predictions to take actions

What we would like is something like a confidence statement

f x 5 AID P y y x

ex 800 confident the person is sick

Our goal is to know what our

predictive models do AND do not know

Two types of uncertainty
We first need to define what we mean by uncertainty

lowest possible error rate of a classifier

t.IT aamental related to the Bayesenorrated
irreducible untertainty even if you collect more data

only way around this is to collect more features



train NN

to learn classifier fromProf Eric
Nalisnick's lecture
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high aleatoric uncertainty in 0 region b c there is fundamental

overlap btwn the distributions green in red red i green

I suppose the the data is linear w Gaussian noise
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The optimal estimator is linear regressor f a bx As we

collect more data d b a b So the best error we

could get is 02 the irreducible error noise in the data itself
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multiple training runs of NN with different rand seeds

It's important to understand these differences in

uncertainty but in practice its very hard to know the diff

for most of these lectures we will brush this distinction

under the rug a bit say uncertainty is high if either
types are high

Notation Assumptions

For these lectures we will assume that there is a

fixide unknowing distribution that generates data

Y PCy1 5
features

I true labels



we get to see a finite number of samples to form our

training data
D exi yes

we fit a model to recover the ground truth distribution

f x ply x P y x

modeling Paradigms

Broadly speaking there are two modeling schools of thought
frequentism and Bayesianism An intuitive separation comes

from where we model randomness as coming from

1 FREQUINTISMI randomness comes from the data distribution

what this translates to in terms of model learning is

learning the maximum likelihood estimator MLE
fax

argo.mg llogplyilxiso Icyixit
maximize the log likelihood of model parameters O

FREQUENTIST IDEAL uncertainty quantific

Ideally under this paradigm if I have a reallybig model

and really big dataset etc we can quantify uncertainty

bysimply looking at the model probabilities

p y d Ply j x

Here UQ looks trivial If I have classifier p fix É
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raw outputscores
So are we done

Frequentist learning limitations

In practice as you may have experienced yourself we can'tusually

rely on these probabilities dirently

Guo et al ICML 2017 on calib of modern NNS

ing classificdataset

LENEII is an old smaller NN RESNED
giggyme powerful

model
5 layers Showing softmax
probabilities associated w each label

new model has higher aciuracyold model is evenly distributed EEE fmaIEcueo1oiigt.EE gmatoes accuracy
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2 BAYESIANIST randomness is influenced by priordistribution
one model parameters

In Bayesian learning we define a priordistribution p O over

model parameters to jump start your learning it can constrain

you solutions to certain plausible solutions You
multiply your prior by your likelihood this is where

your model plyilxz.io comes in and then you
normalize to get a posterior distribution that has

been updated b c you have seen data

PCO D FEPINPCy.tn
likelihood

polstein's

yptDI pro plyilxi.io do

Normalizing constant is the hard part about Bayesian lean
when this is NN params hard

IDEAL BAYESIAN UQ

Assuming you could solve the normalizer then given any new

data point x ̅ you can compute the

Pier Predictiveaeration
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what you would use to make preds B c it has

thithintyer atffn mode a deal's_ in posterior



Under heart perfect learning use post pred dist as

your ground truth probabilities
p y x ̅ D P y y Ix

You can report confidencejust like before

Bayesian learning Limitations

mostly computational integrating over params hard forNNS
and so computing normalizer or posteriorpred dist is hard


