Towards Safe and Aligned Embodied AI in the Era of Robotics Foundation Models

Thomas (Ran) Tian rantian@berkeley.edu

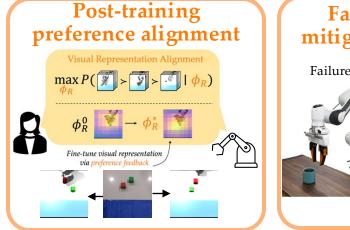
Final-year Ph.D. student at UC Berkeley

Supervised by Prof. Masayoshi Tomizuka and Prof. Andrea Bajcsy

My Research Trajectory

Multi-Task Learning

l_{w(t)}



$$\max_{\pi} \mathbb{E} \begin{bmatrix} \sum_{t=0}^{T-1} & \text{of the environment} \\ \sum_{t=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+T}) \\ \sum_{t=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+T}) \end{bmatrix} \quad \text{s.t.} \quad \frac{\text{Dynamics}}{\text{P}(s_{t+1}|s_t, a_t)}$$

$$P(s_{t+1}|s_t, a_t)$$

$$P(s_{t+\tau} \in \text{safe set}) \geq \Delta$$

$$Desired \text{ safety guarantee}$$

Model-predictive control

Dynamic programing

Reach-avoid game

Belief space planning ...

$$\max_{\pi} \mathbb{E} \left[\sum_{\tau=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+\tau}) \right] \qquad \text{s.t.} \quad P(s_{t+1}|s_t, a_t)$$

$$P(s_{t+\tau} \in \text{safe set}) \ge \Delta$$

When this works great?

Constrained, parsed, and well modeled environment

Other "agents" are well defined

State is clearly defined

Can know how state evolves given actions of all "agents"

Have the tools to efficiently solve this problem

$$\max_{\pi} \mathbb{E} \left[\sum_{\tau=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+\tau}) \right] \qquad \text{s.t.} \qquad P(s_{t+1}|s_t, a_t)$$

$$P(s_{t+\tau} \in \text{safe set}) \ge \Delta$$

s.t.
$$P(s_{t+1}|s_t, a_t)$$

 $P(s_{t+\tau} \in \text{safe set}) \ge \Delta$

When this works great?

Constrained, parsed, and well modeled environment

Other "agents" are well defined

State is clearly defined

Can know how state evolves given actions of all "agents"

Have the tools to efficiently solve this problem

But in real world, ...

$$\max_{\pi} \mathbb{E} \left[\sum_{\tau=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+\tau}) \right] \qquad \text{s.t.} \qquad P(s_{t+1}|s_t, a_t)$$

$$P(s_{t+\tau} \in \text{safe set}) \ge \Delta$$

When this works great?

Constrained, parsed, and well modeled environment

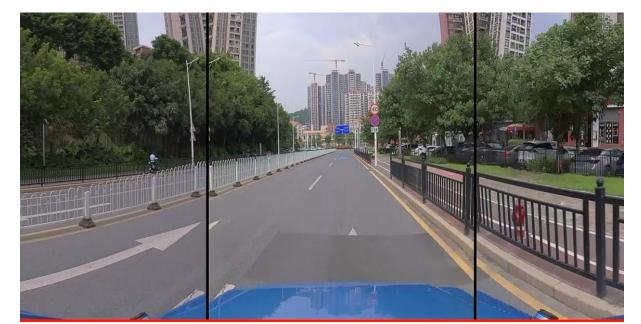
Other "agents" are well defined

State is clearly defined

Can know how state evolves given actions of all "agents"

Have the tools to efficiently solve this problem

But in real world, ...



$$\max_{\pi} \mathbb{E} \left[\sum_{\tau=0}^{T-1} r_R(s_{t+\tau}, \pi(s_{t+\tau})) + V(s_{t+\tau}) \right] \qquad \text{s.t.} \quad P(s_{t+1}|s_t, a_t)$$
$$P(s_{t+\tau} \in \text{safe set}) \ge \Delta$$

s.t.
$$P(s_{t+1}|s_t, a_t)$$

 $P(s_{t+\tau} \in \text{safe set}) \ge \Delta$

When this works great?

Constrained, parsed, and well modeled environment

Other "agents" are well defined

State is clearly defined

Can know how state evolves given actions of all "agents"

Have the tools to efficiently solve this problem

But in real world, ...

Beginning: X-MPC with symbolic representations defined by engineers State-space Modelrepresentation based approaches

Perception models

Structured information

- Agent property
 - o Bounding box
 - Label
 - Obs status
 - o Risk level
- Lane property

• •

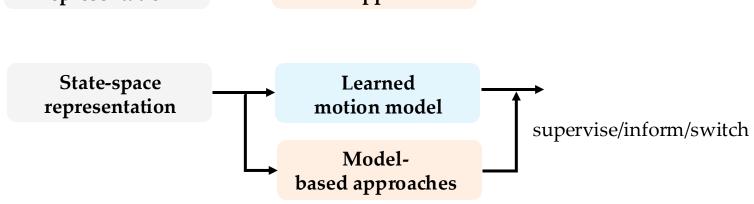
Formulate planning optimization

Modelbased approaches

Beginning: X-MPC with symbolic representations defined by engineers

State-space Modelrepresentation based approaches

Autonomy 1.0: [system 1, system 2] with symbolic representations



Human behavior prediction

Legend t = +8s p = 1.0

Neural dynamics

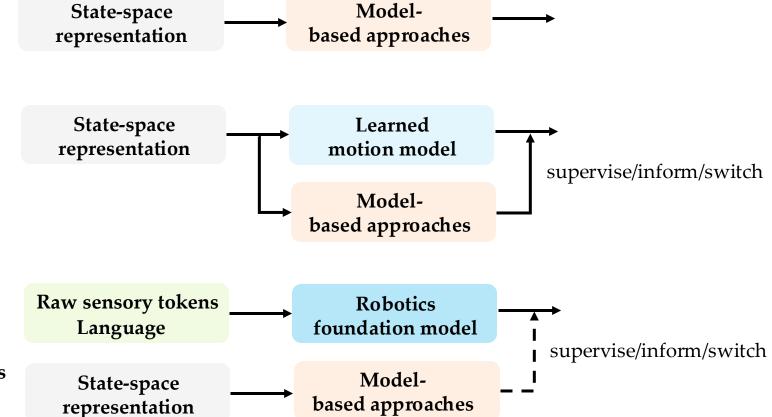
Control gain scheduling

[Nayakanti, Nigamaa, et al. "Wayformer: Motion forecasting via simple & efficient attention networks." ICRA, 2023.] [Wang, Changhao, et al. "Safe online gain optimization for cartesian space variable impedance control." CASE. IEEE, 2022.]

Beginning: X-MPC with symbolic representations defined by engineers

Autonomy 1.0: [system 1, system 2] with symbolic representations

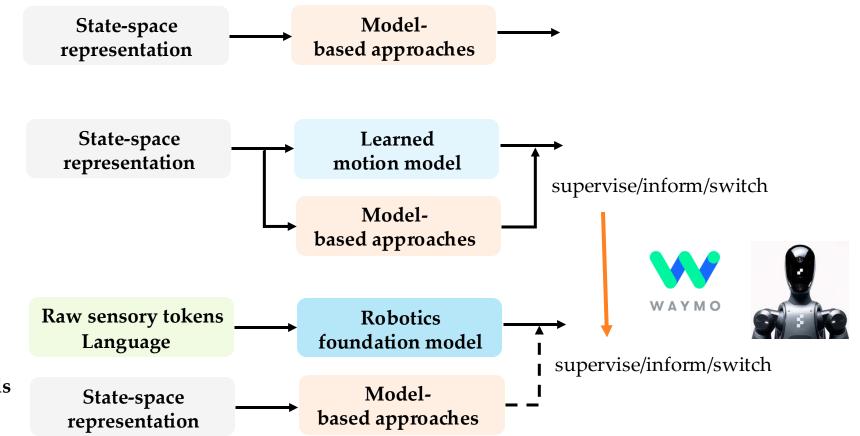
Autonomy 2.0: system 1 with symbolic representations system 2 with sensory tokens + foundation models



Beginning: X-MPC with symbolic representations defined by engineers

Autonomy 1.0: [system 1, system 2] with symbolic representations

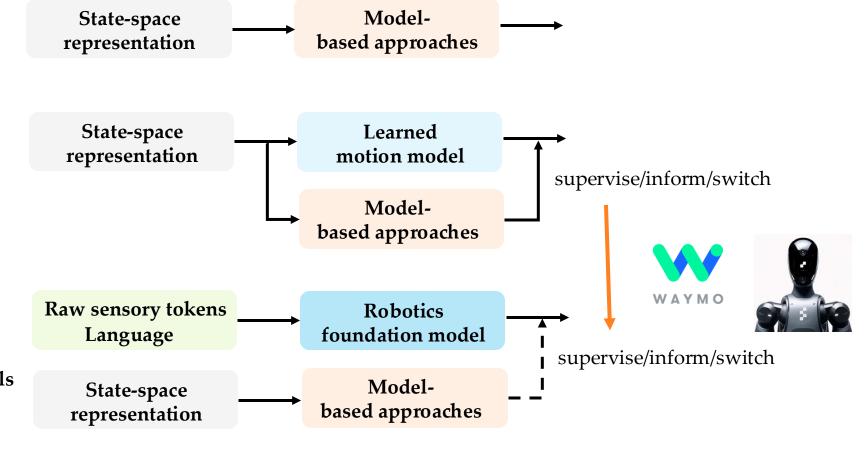
Autonomy 2.0: system 1 with symbolic representations system 2 with sensory tokens + foundation models

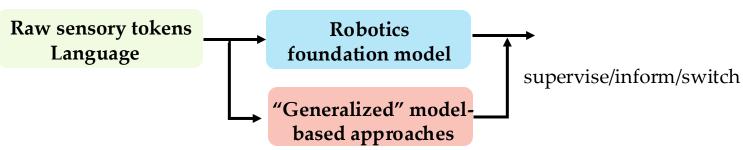


Beginning: X-MPC with symbolic representations defined by engineers

Autonomy 1.0: [system 1, system 2] with symbolic representations

Autonomy 2.0: system 1 with symbolic representations system 2 with sensory tokens + foundation models

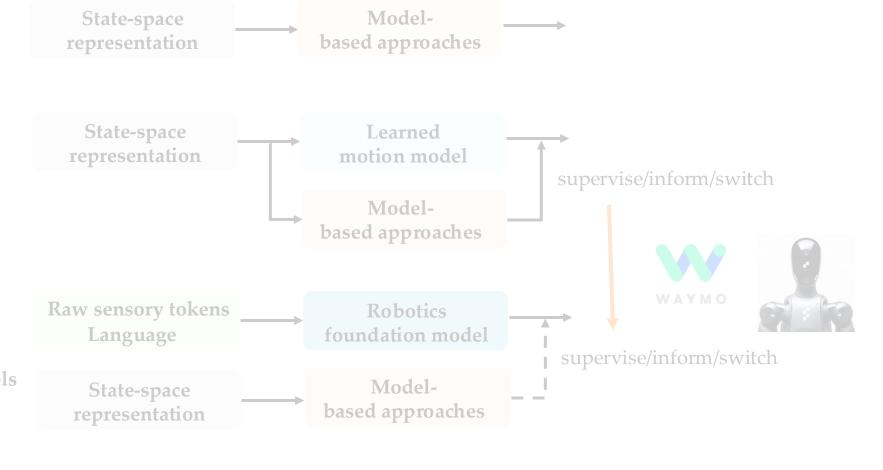




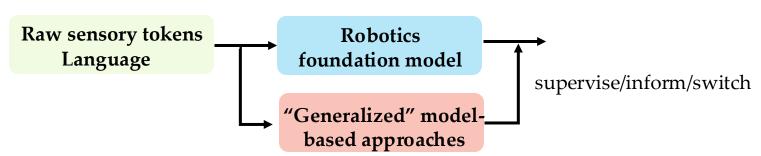
Beginning: X-MPC with symbolic representations defined by engineers

Autonomy 1.0: [system 1, system 2] with symbolic representations

Autonomy 2.0: system 1 with symbolic representations system 2 with sensory tokens + foundation models



Autonomy 3.0?



Behavior cloning for robot learning

Let's remember what the expert did and copy them!

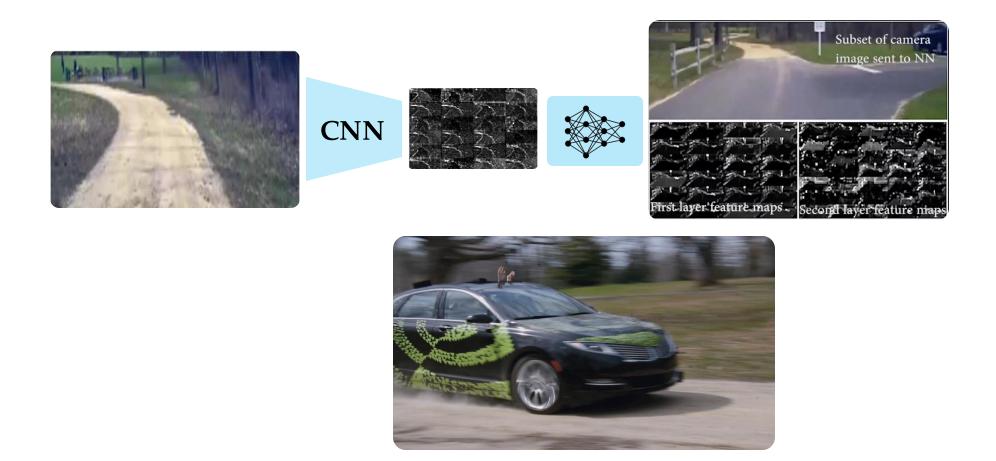
Behavior cloning for robot learning

Let's remember what the expert did and copy them!

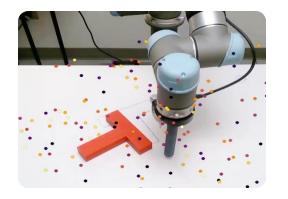
$$\max_{\theta} \mathbb{E}\left[\mathbb{P}_{\theta}(\boldsymbol{a}_{0:T}^*|\boldsymbol{o}_0; \text{context})\right]$$

{(context,
$$o_0, a_{0:T}^*)^1, \dots$$
}

10 years ago – CNN based Policy Model



2 years ago – Diffusion Policy Model



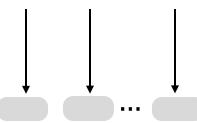
Diffusion Model

Large-scale data is a key factor for robotics foundation models

{(observation, action, task spec)_t}

Now – Vision-Language-Action Robotics Foundation Model

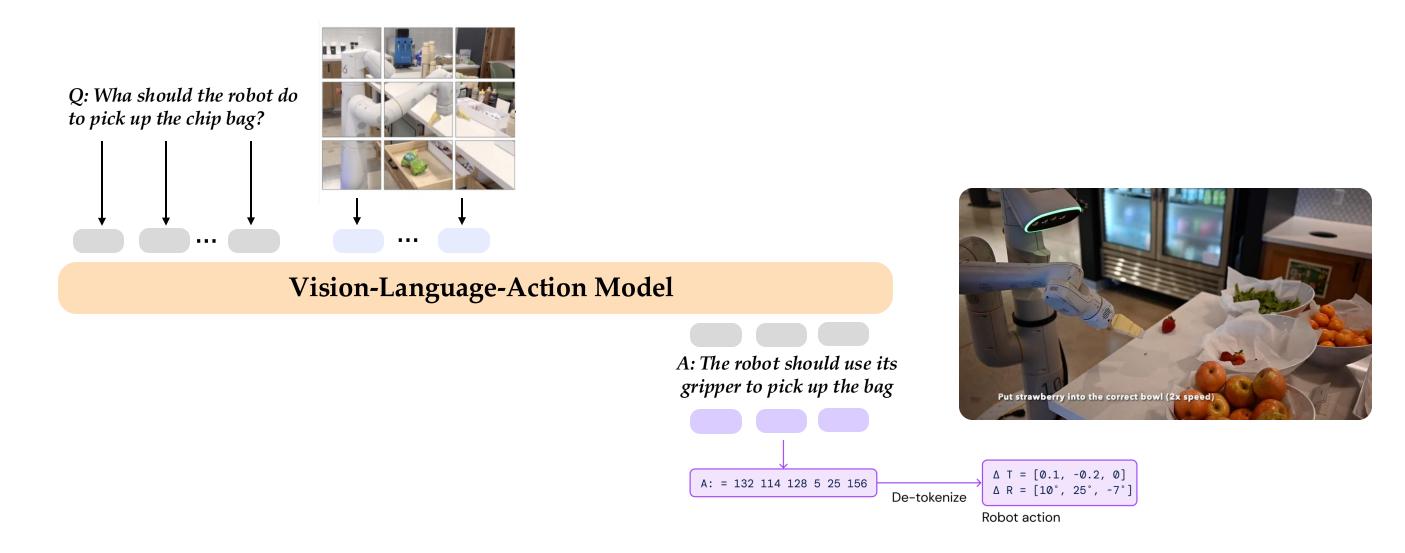
Q: Wha should the robot do to pick up the chip bag?



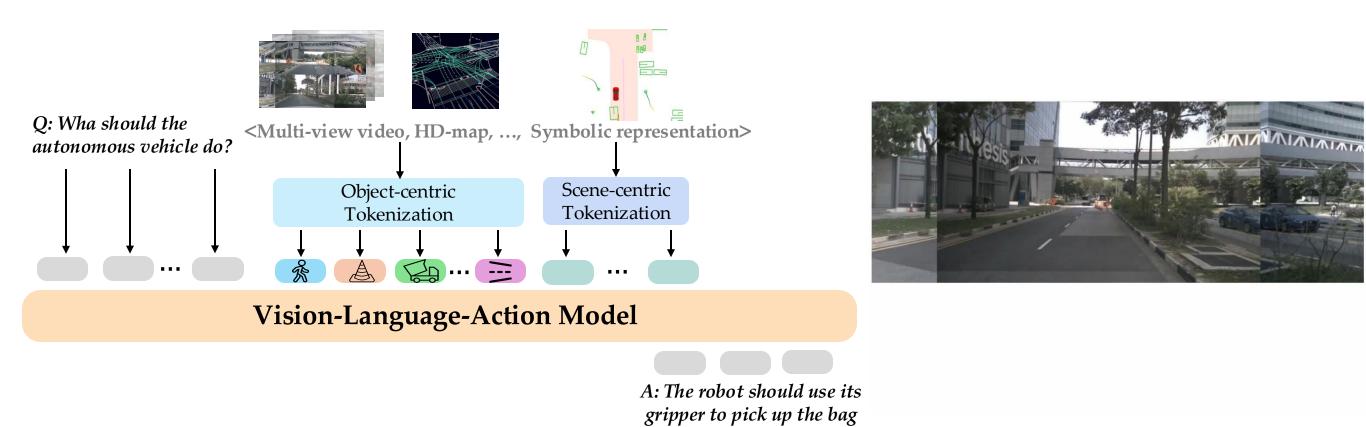
Large Language Model

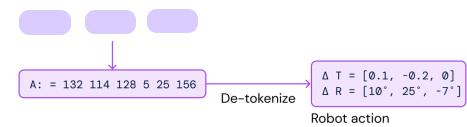
A: The robot should use its gripper to pick up the bag

Now – Vision-Language-Action Robotics Foundation Model



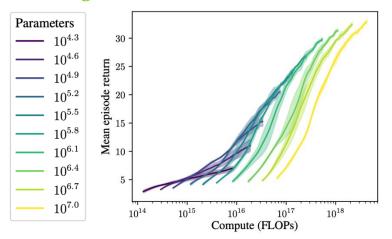
Now – Vision-Language-Action Robotics Foundation Model

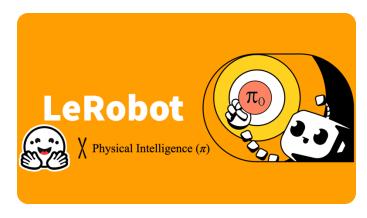




Shortest Path to Generalist Robots?

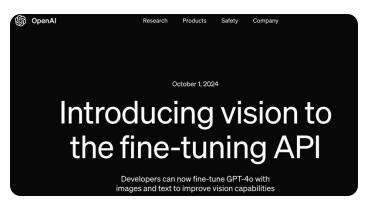
Scaling law seems to work in robotics





Open-sourced model / training pipeline

Commercialization of large-scale robot data collection



More affordable "one-click" finetunning API

Imitation is a "proxy" of the true training objective

Let's remember what the expert did and copy them!

$$\max_{\theta} \mathbb{E}\left[\mathbb{P}_{\theta}(\boldsymbol{a}_{0:T}^*|\boldsymbol{o}_0; \text{context})\right]$$

Safety > comfort, progress, etc

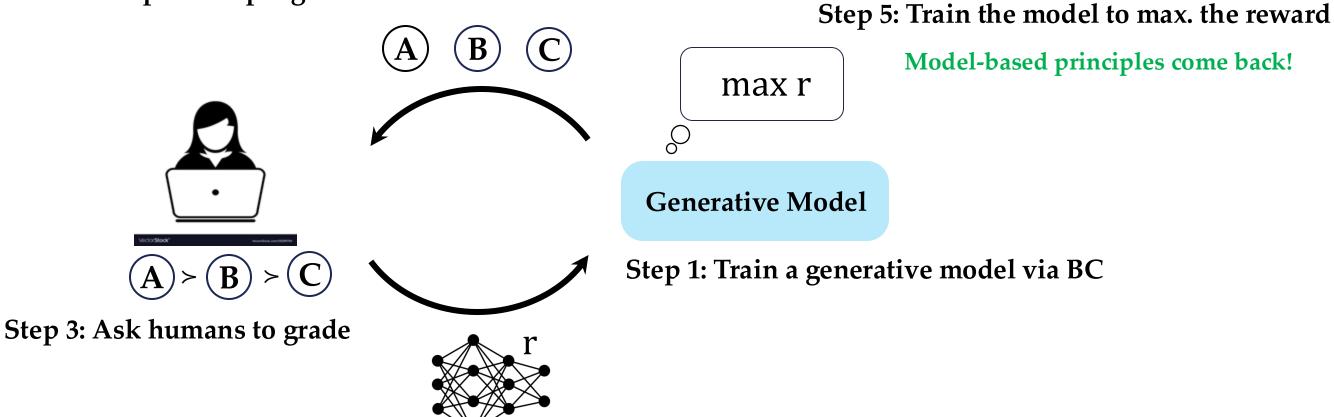
Miss-Alignment
By optimizing an **incomplete** or **mis-specified** objective, these models lead to **undesirable** behaviors at best and safety hazards at worst!

Hand me a bag of chips

I don't want my chips crashed...

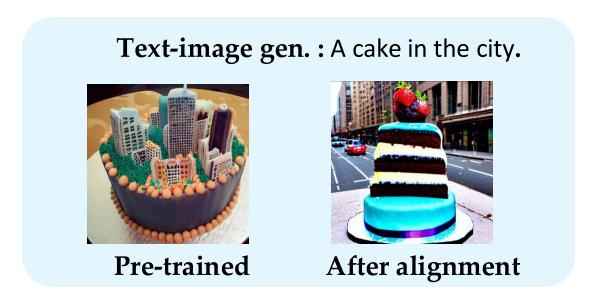
 $\max_{\theta} \mathbb{E}\left[\mathbb{P}_{\theta}(\boldsymbol{a}_{0:T}^*|\boldsymbol{o}_0; \text{context})\right]$

Step 2: Sample generations from the model



Step 4: Learn a reward function

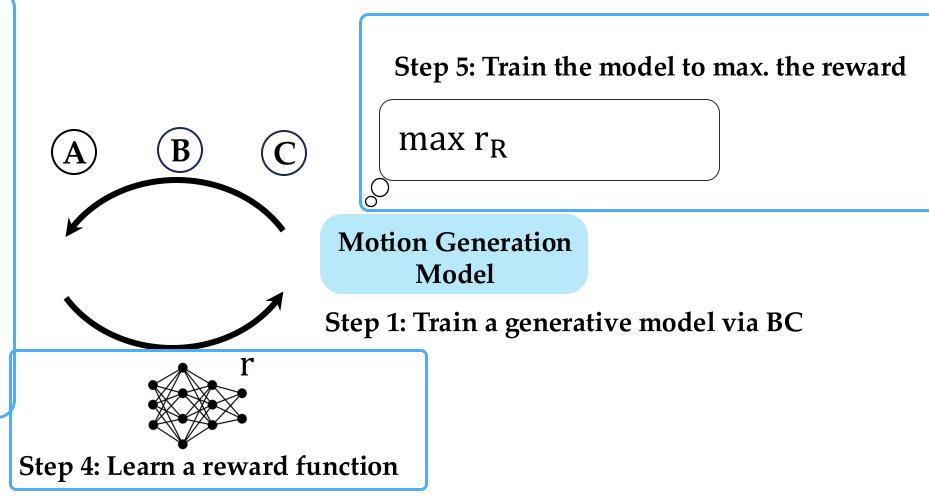
Predominant alignment mechanism in *non-embodied* domains



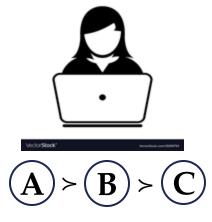
RLHF has yet to achieve the same impact in aligning robotics motion generation models

Step 2: Sample generations from the model

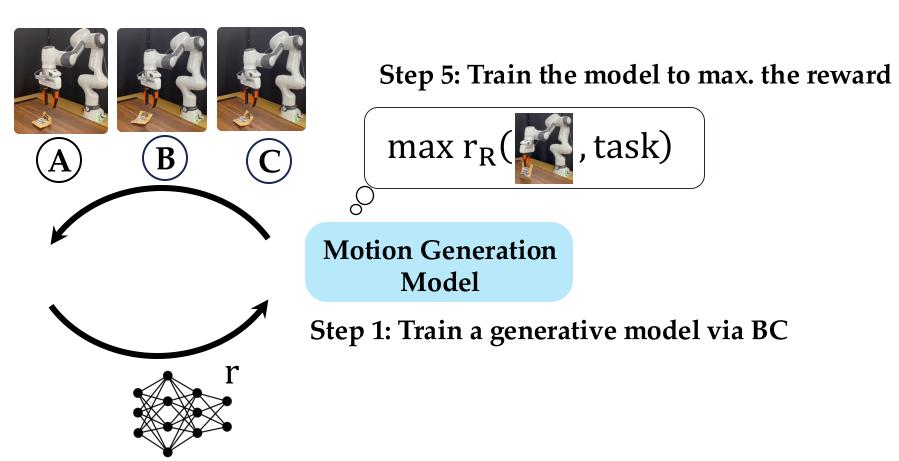
Step 3: Ask humans to grade



Step 2: Sample generations from the model

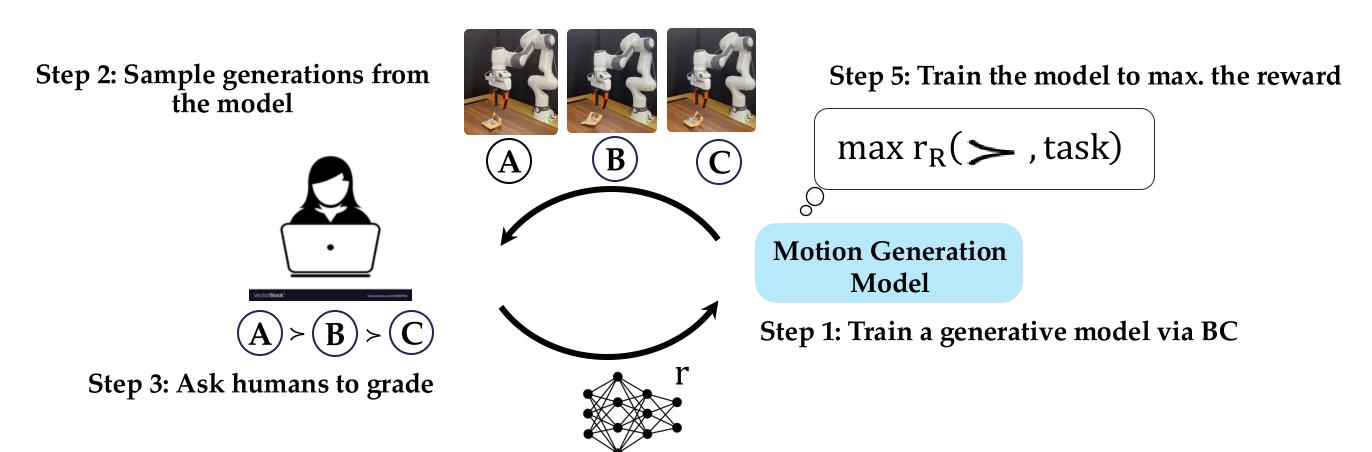


Step 3: Ask humans to grade



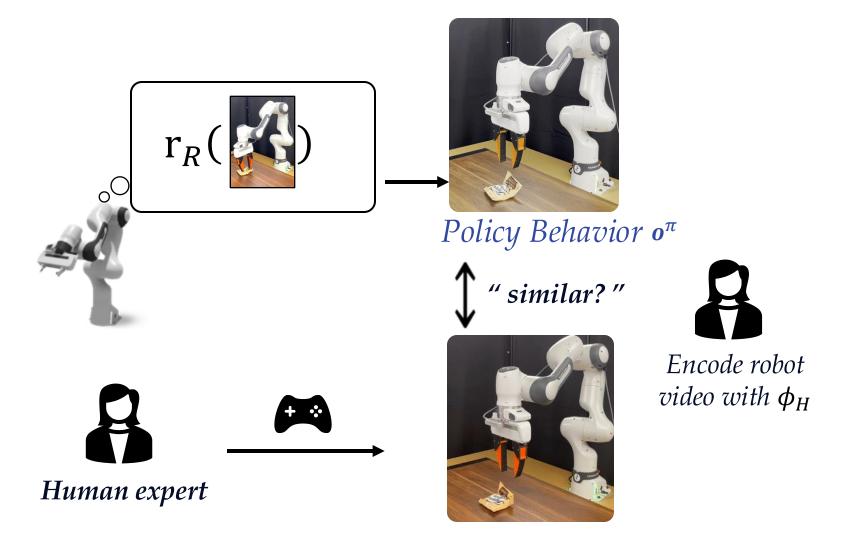
Step 4: Learn a reward function

Learning a high-quality visual reward function requires an impractically large amount of human preference feedback

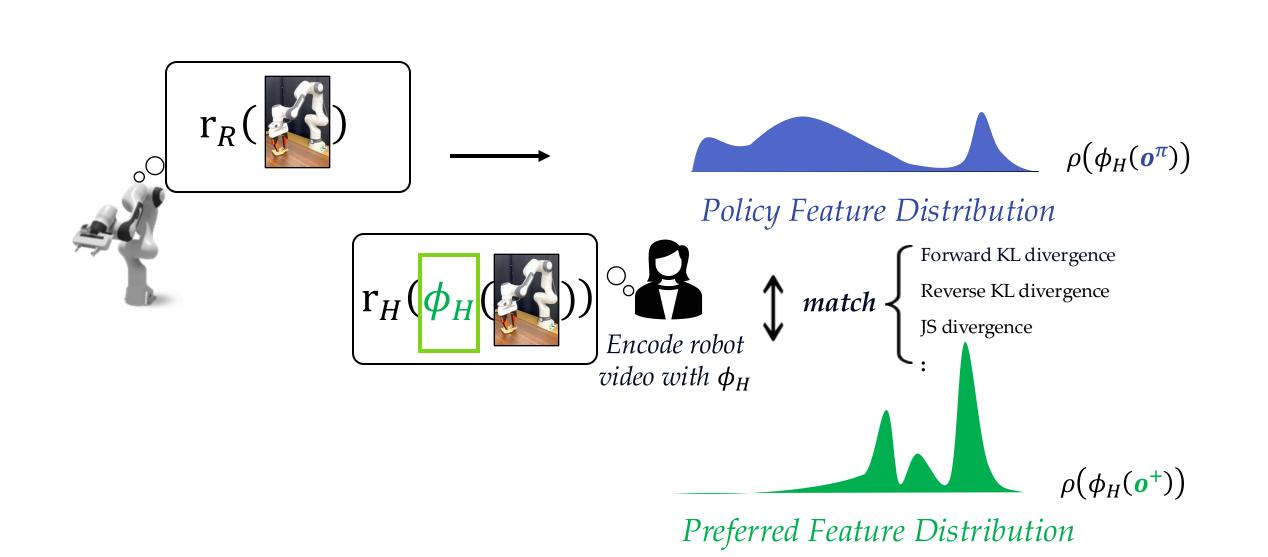


Step 4: Learn a reward function

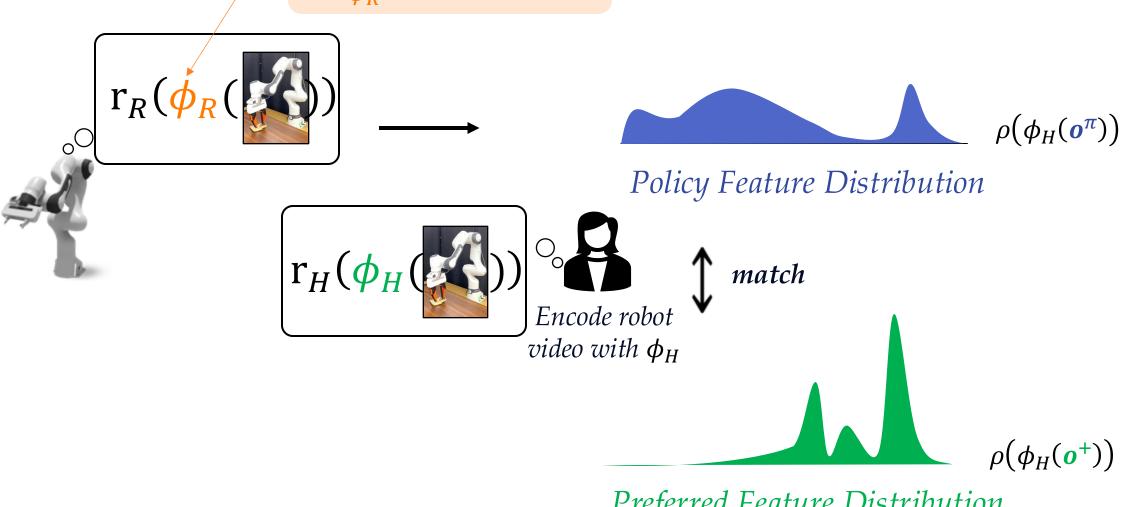
Goal: Maximizing Alignment with Minimal Feedback!

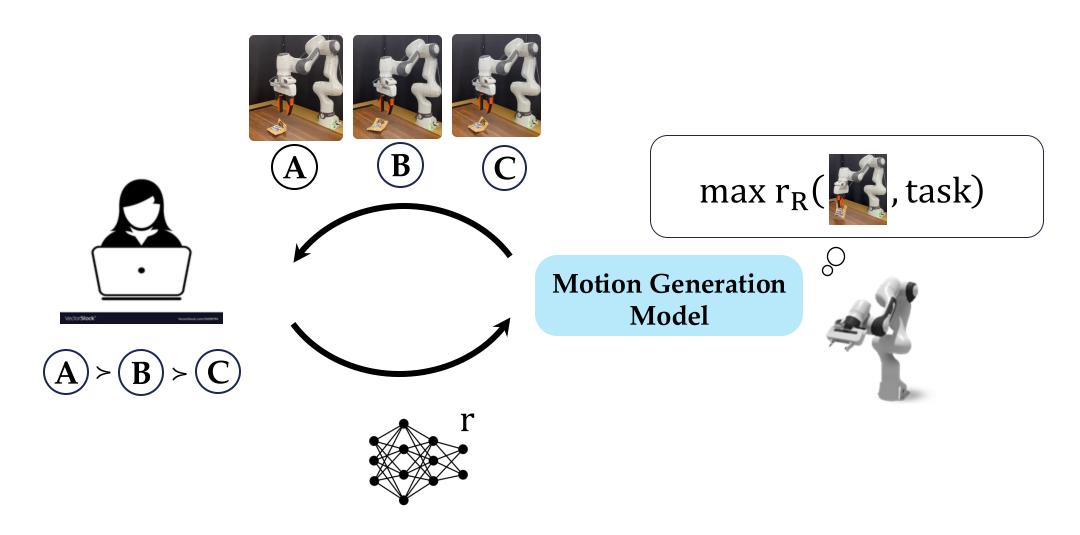


Preferred Behavior o+

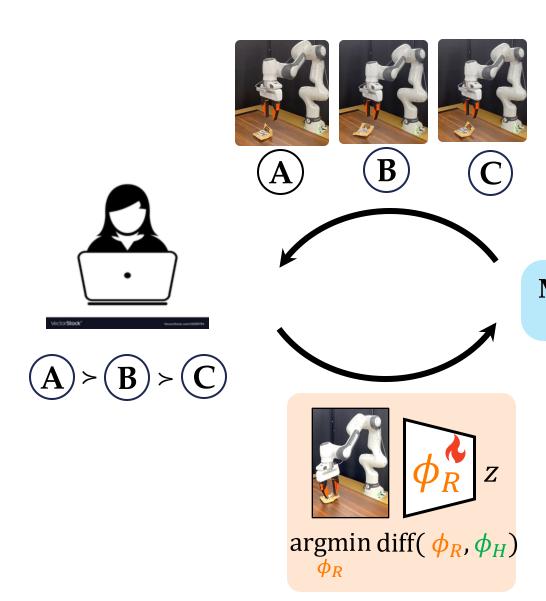


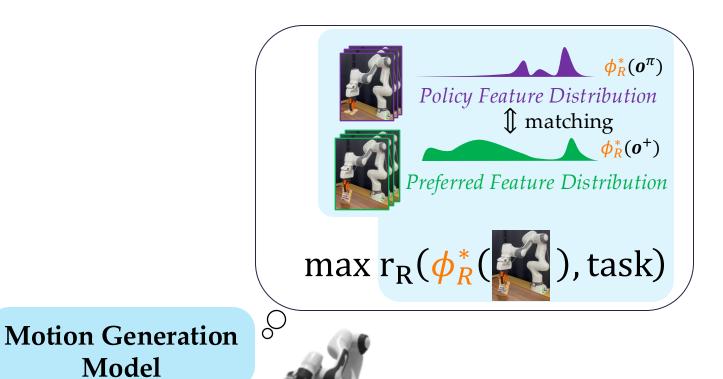
Visual Representation Alignment





Learning reward end-to-end





Key idea: Allocate human budget exclusively to align visual representations

Visual Representation Alignment

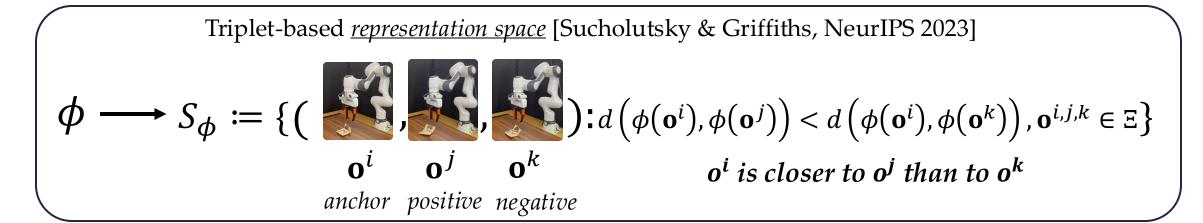
Model

Formalizing Visual Representation Alignment

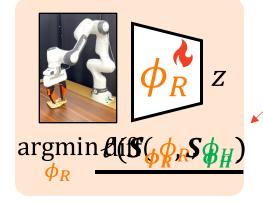
How to formally describe and compare two encoders?

Formalizing Visual Representation Alignment

How to formally describe and compare two encoders?



learning ϕ_R which minimizes the difference between two agents' representation spaces (S)



- 1) Don't have direct access to ϕ_H
- **2)** S_{ϕ_H} is extremely large in space of videos

$$\min_{\phi_R} \ell(S_{\phi_R}, S_{\phi_H})$$

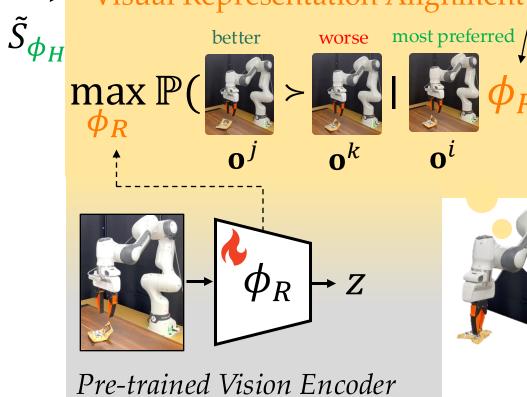
$\min_{\phi_R} \ell(S_{\phi_R}, \tilde{S}_{\phi_H})$

Query the end user

I don't want my chips crushed!

I don't want my chips crushed!

Visual Representation Alignment

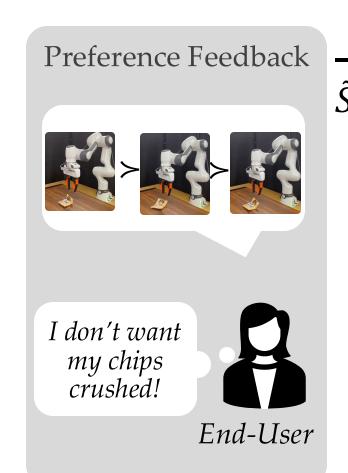


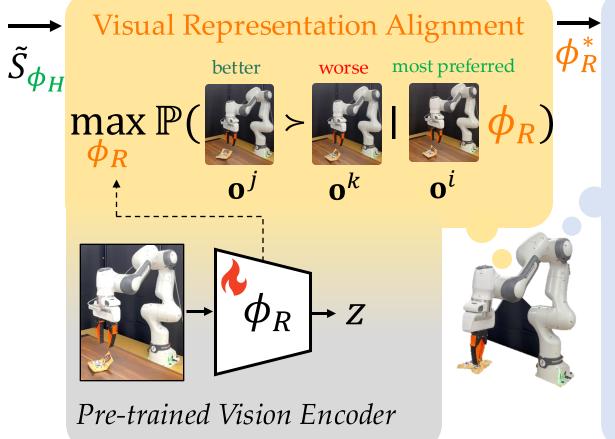
Bradley-Terry model

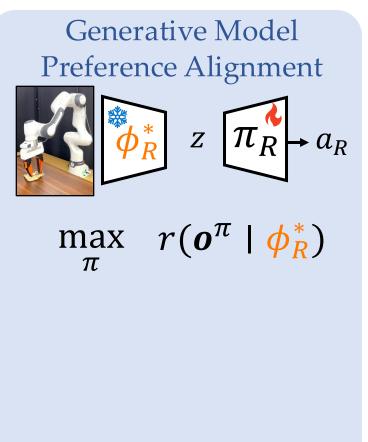
$$e^{-d(\phi_R(o^i),\phi_R(o^j))}$$

$$e^{-d(\boldsymbol{\phi}_{R}(\boldsymbol{o}^{i}),\boldsymbol{\phi}_{R}(\boldsymbol{o}^{j}))} + e^{-d(\boldsymbol{\phi}_{R}(\boldsymbol{o}^{i}),\boldsymbol{\phi}_{R}(\boldsymbol{o}^{k}))}$$

Two equally **preferred** behaviors should have **similar** feature representations.





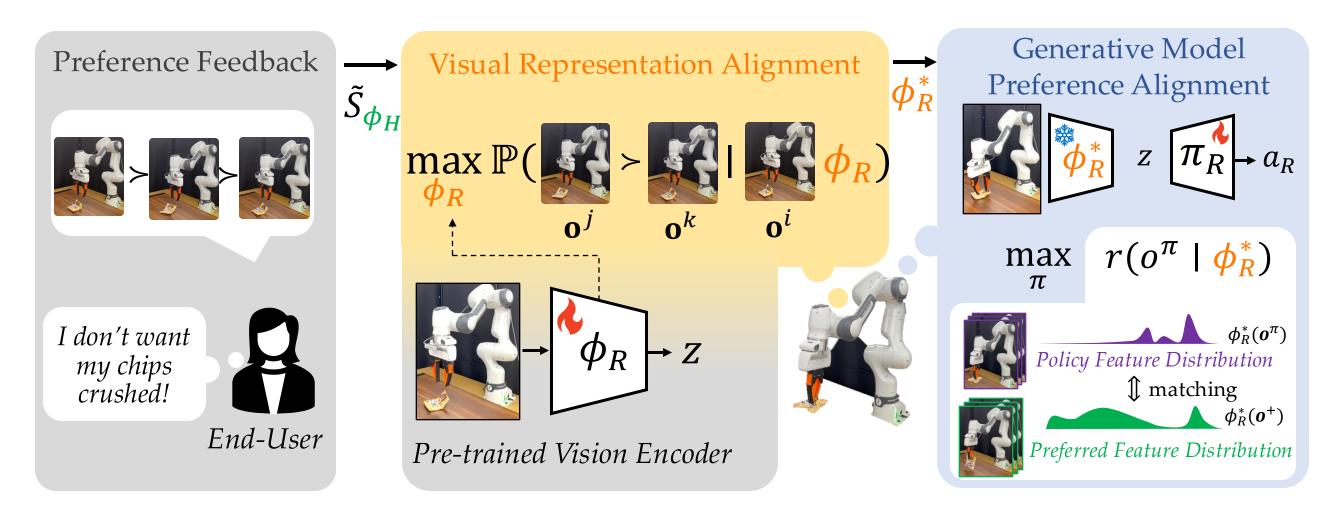


Representation-Aligned Preference-Based Learning (RAPL)

Action-free & video only

Data efficient reward learning

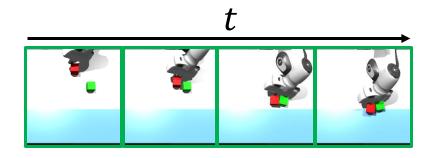
Effective preference alignment



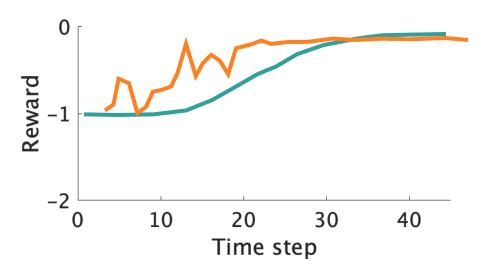
[Tian et al. "What Matters to You? Towards Visual Representation Alignment for Robot Learning". ICLR 2024.]

[Tian et al. "Maximizing Alignment with Minimal Feedback: Efficiently Learning Rewards for Visuomotor Robot Policy Alignment". arxiv 2025.]

 $r^*(\phi_H(o))$: push objects move <u>efficiently</u> to <u>goal region</u>



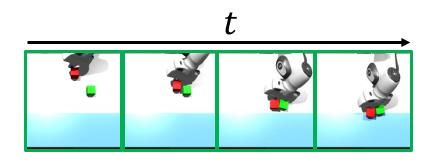
Reward of *Good* Behavior



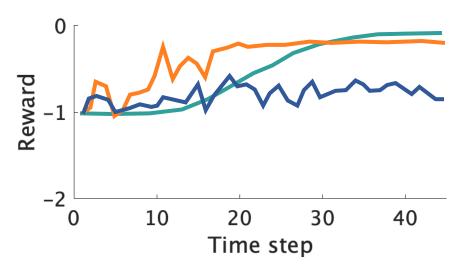
 r^* Ground truth reward

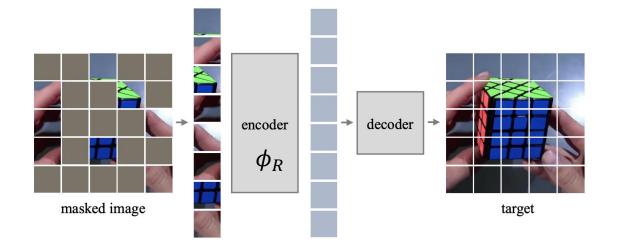
Ours (rep. alignment first then reward pred.)

 $r^*(\phi_H(o))$: push objects move **efficiently** to **goal region**



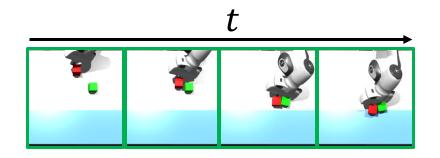
Reward of *Good* Behavior



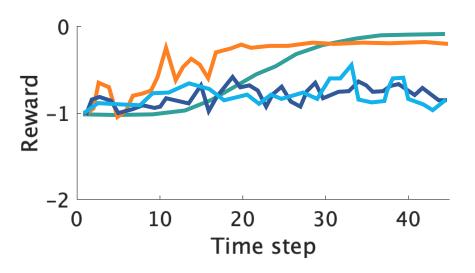


- r^st Ground truth reward
- Ours (rep. alignment first then reward pred.)
- MVP representation [1]

 $r^*(\phi_H(\mathbf{o}))$: push objects move **efficiently** to **goal region**

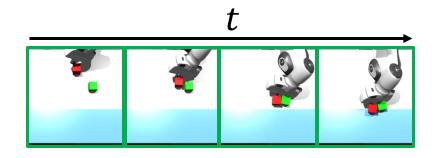


Reward of *Good* Behavior



- r^st Ground truth reward
- Ours (rep. alignment first then reward pred.)
- MVP representation
- Dino representation [1]

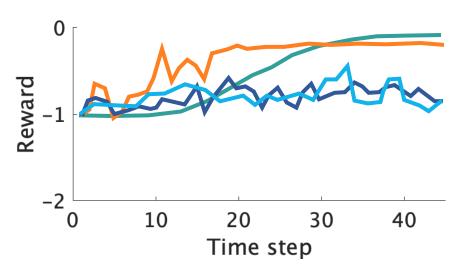
 $r^*(\phi_H(\mathbf{o}))$: push objects move <u>efficiently</u> to <u>goal region</u>



DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning

Gaoyue Zhou 1 Hengkai Pan 1 Yann LeCun 12 Lerrel Pinto 1

Reward of *Good* Behavior



Real-World Robot Learning with Masked Visual Pre-training

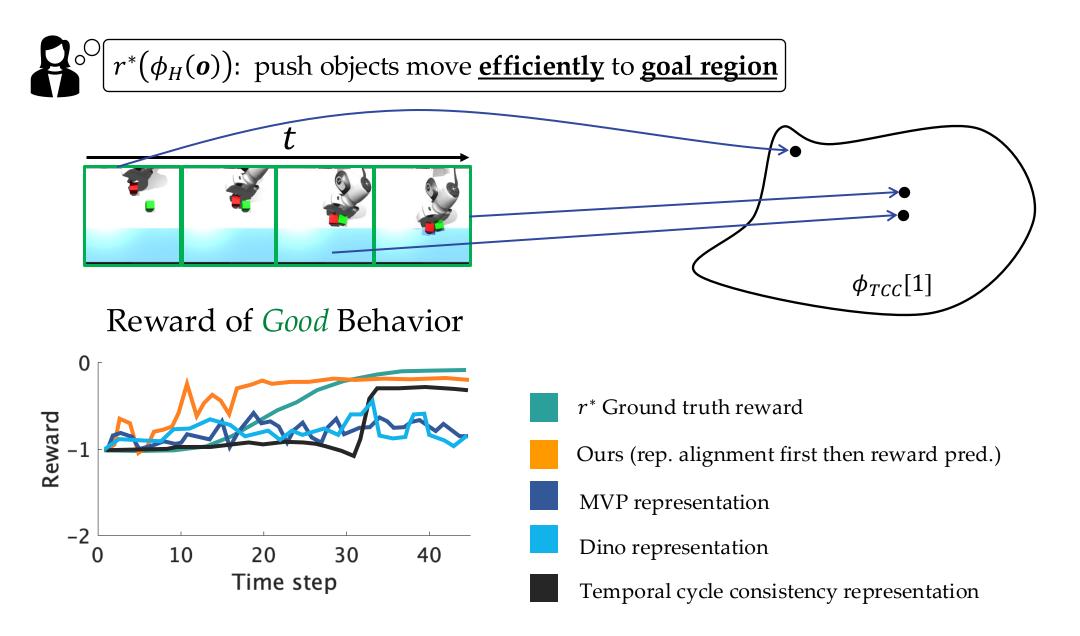
Ilija Radosavovic* Tete Xiao* Stephen James Pieter Abbeel Jitendra Malik† Trevor Darrell†

University of California, Berkeley

Abstract: In this work, we explore self-supervised visual pre-training on images from diverse, in-the-wild videos for real-world robotic tasks. Like prior work, our visual representations are pre-trained via a masked autoencoder (MAE), frozen, and then passed into a learnable control module. Unlike prior work, we show that the pre-trained representations are effective across a range of real-world robotic tasks and embodiments. We find that our encoder consistently outperforms CLIP (up to 75%), supervised ImageNet pre-training (up to 81%), and training from scratch (up to 81%). Finally, we train a 307M parameter vision transformer on a massive collection of 4.5M images from the Internet and egocentric videos, and demonstrate clearly the benefits of scaling visual pre-training for robot learning.

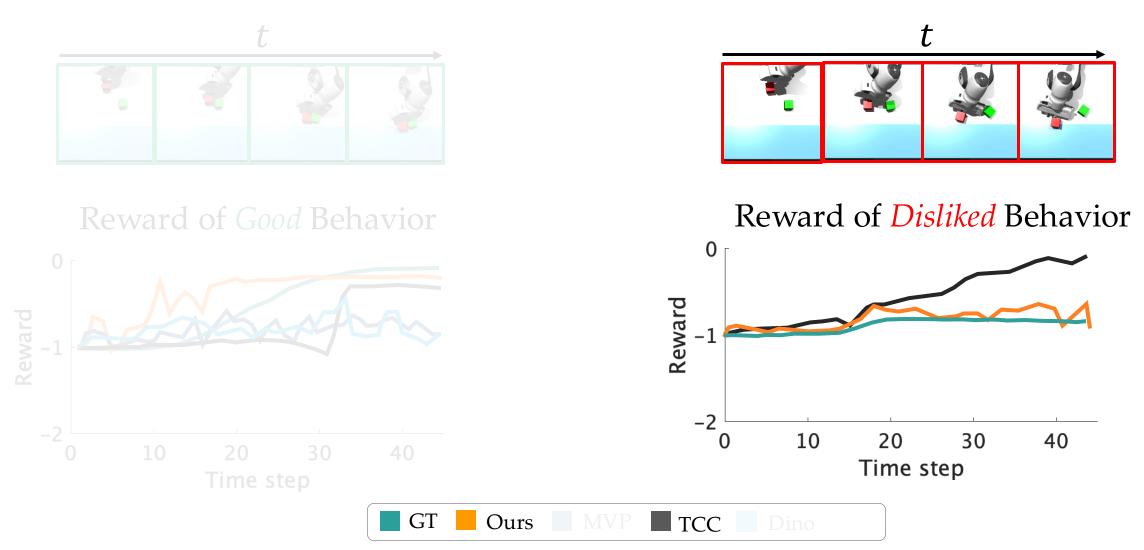
Keywords: Self-supervised Learning, Visual Representations, Robot Learning

Serve as **latent state** representation for planning



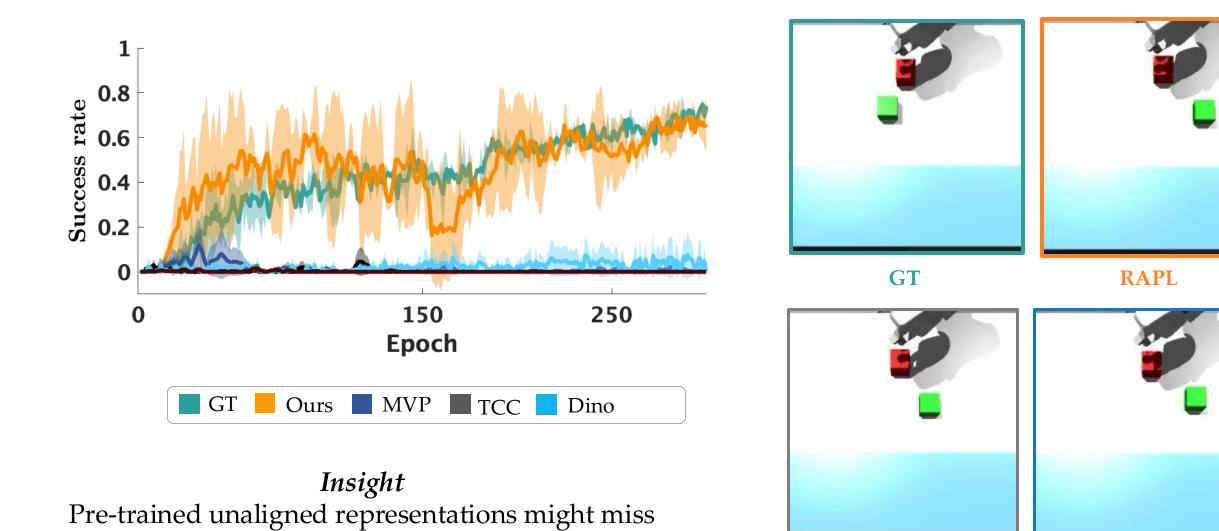
 $r^*(\phi_H(\mathbf{o}))$: push objects move <u>efficiently</u> to <u>goal region</u>

 $r^*(\phi_H(o))$: push objects move <u>efficiently</u> to <u>goal region</u>

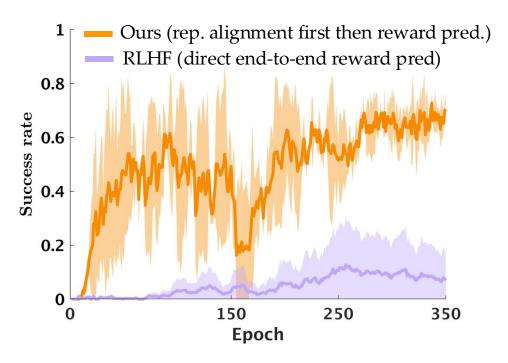


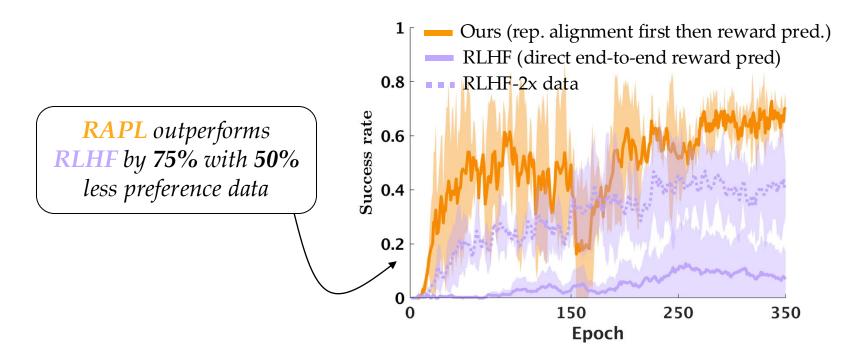
TCC

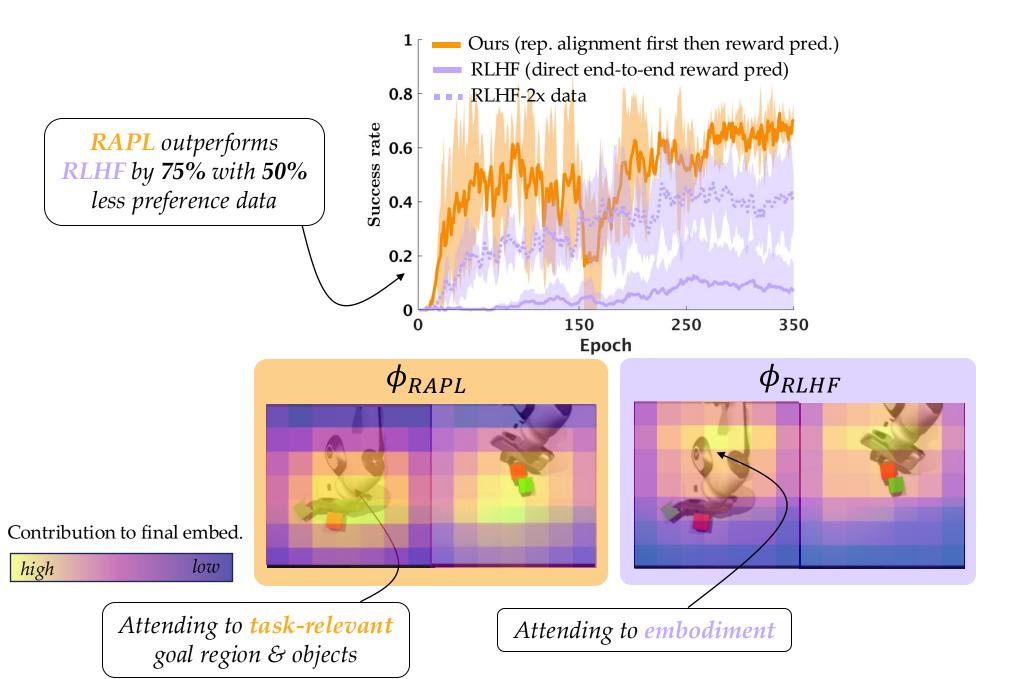
Dino

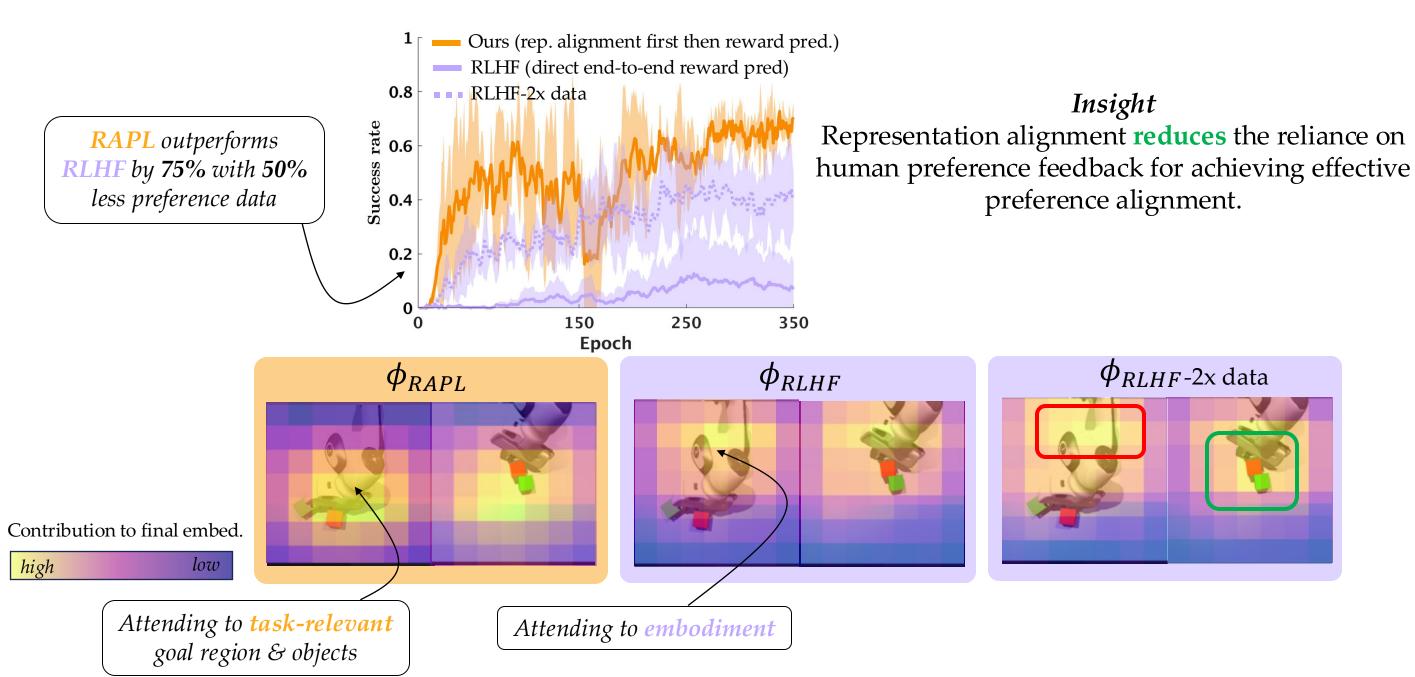


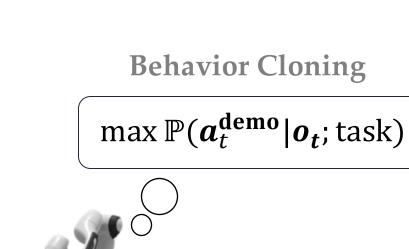
important features that matter to the task











Pick up chips

Crush the chips

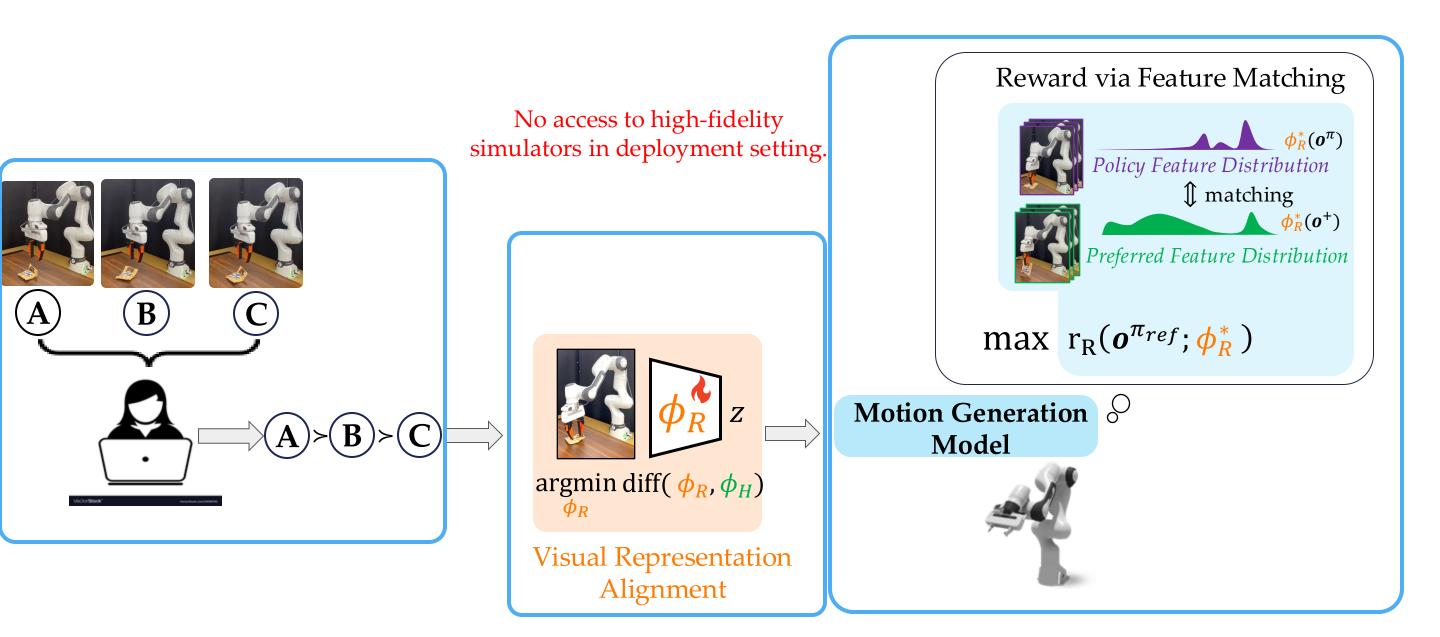
Pick up cup

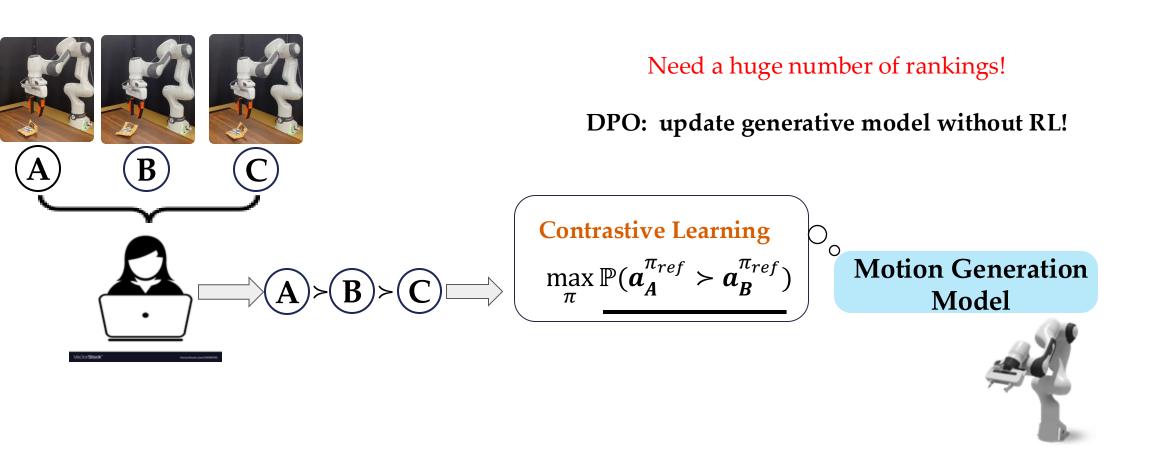
Contaminate water

Pick up and place fork

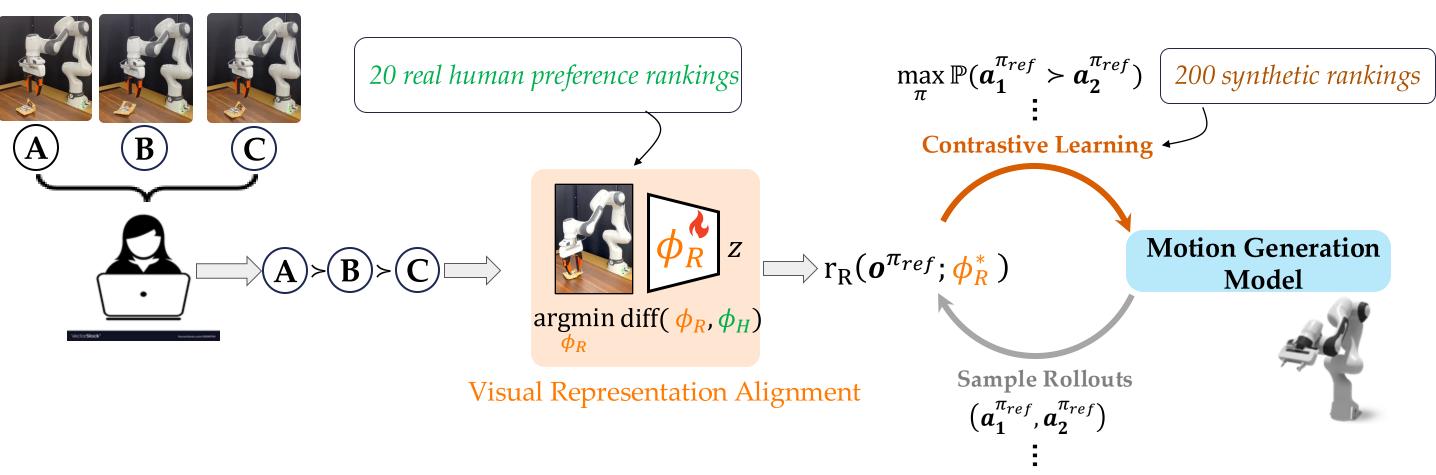


Drop the fork





Key idea: leverage the reward built from the aligned representation to scalably generate synthetic rankings.



Imitation Learning

 $\max \mathbb{P}(\boldsymbol{a}_t^{\mathbf{demo}}|\boldsymbol{o_t}; \mathsf{task})$

 $\max \mathbb{P}(a_{+}^{\pi_{ref}} > a_{-}^{\pi_{ref}}; \phi_{R}^{*}, \text{task})$

Preference Alignment

Before alignment

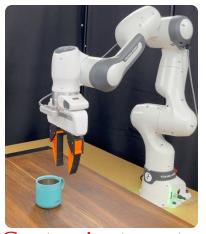
After alignment

Pick up chips

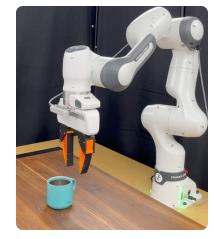
Crush the chips

Hold the packaging by its edges

Pick up cup

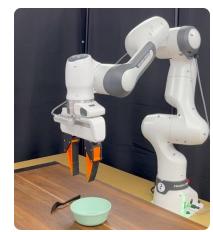


Contaminate water

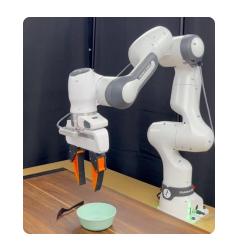


Pick the cup by the handle

Pick up and place fork

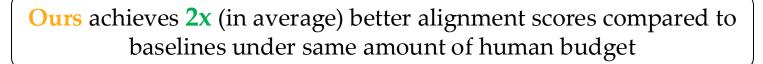


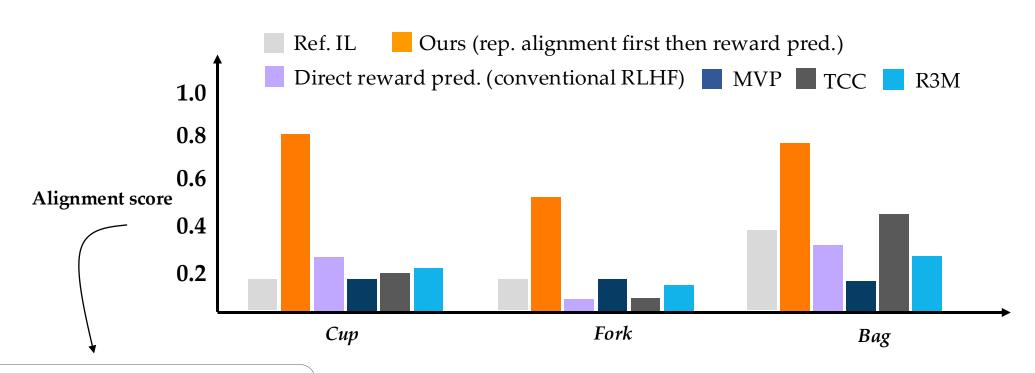
Drop the fork



Gently place the fork

Result – alignment performance

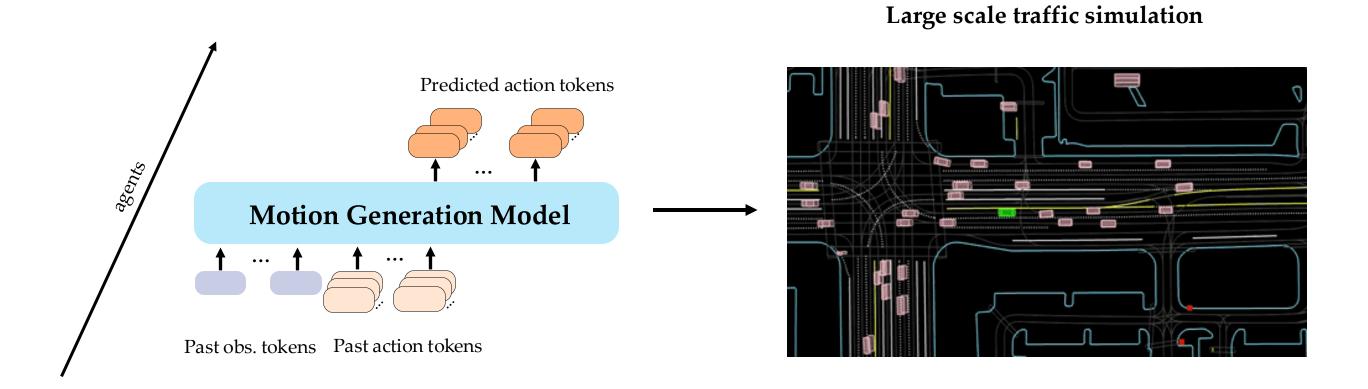




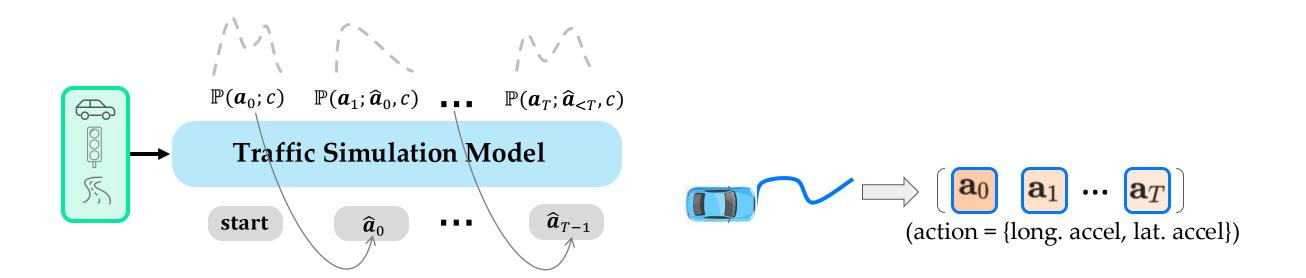
most-likely mode is preferred (**graded by human**)

test task configurations

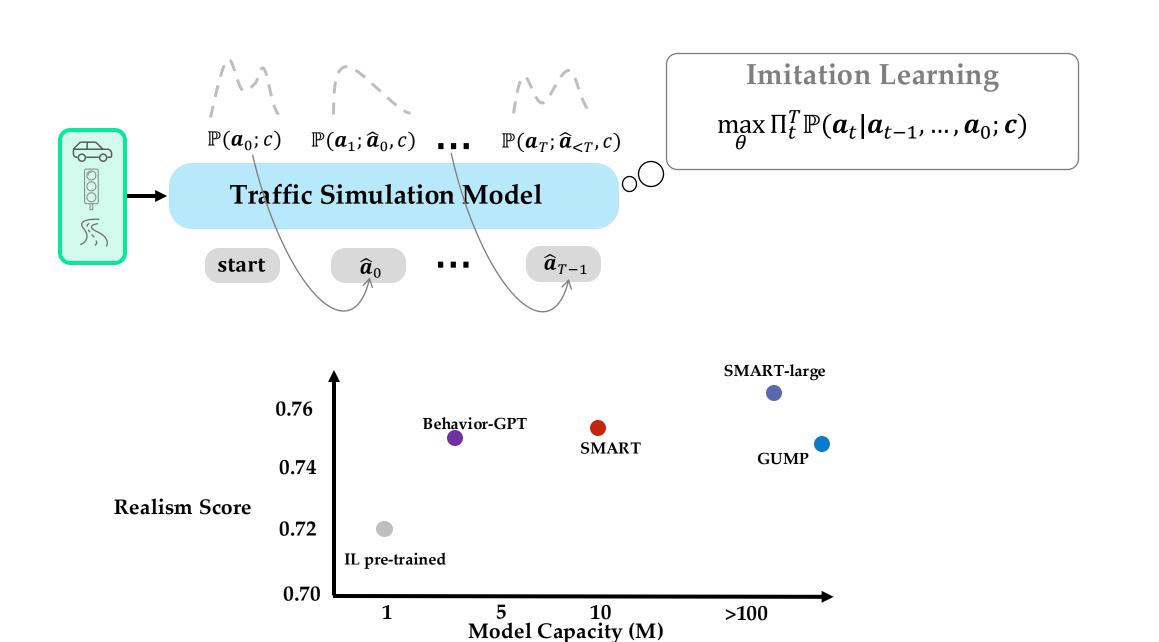
Let's Scale it up to Multi-agent!



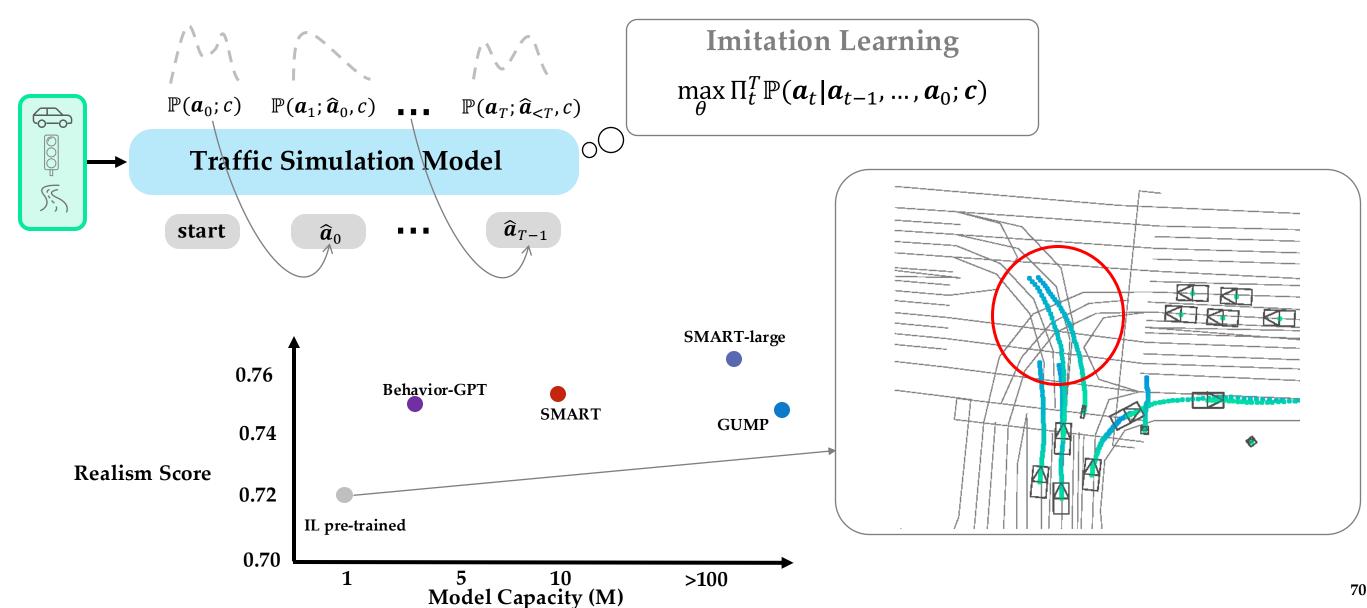
Imitation-learning based Traffic Simulation Model



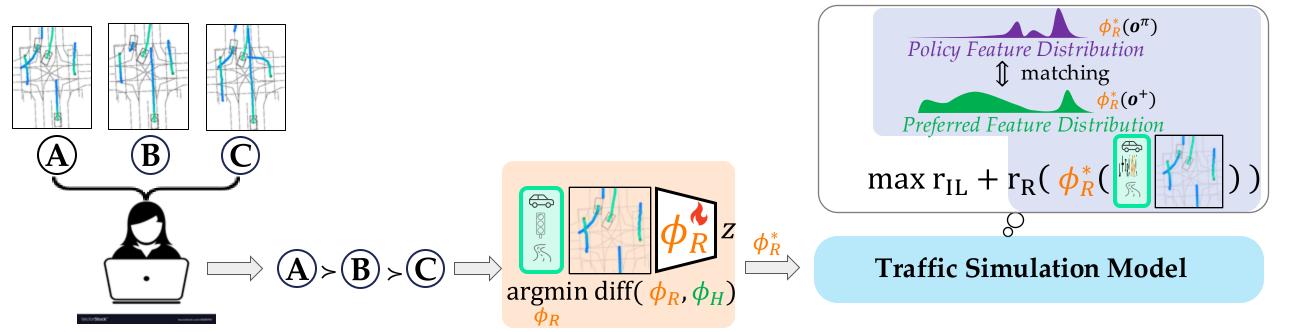
Imitation-learning based Traffic Simulation Model



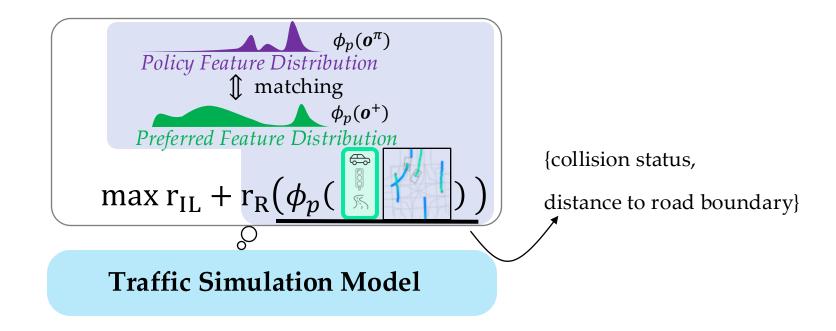
Imitation-learning based Traffic Simulation Model

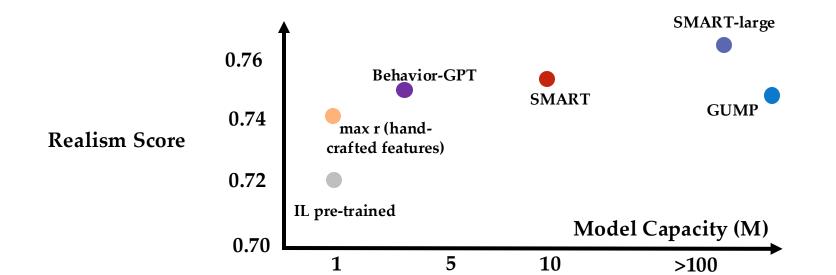


Preference-Alignment of Traffic Simulation Model

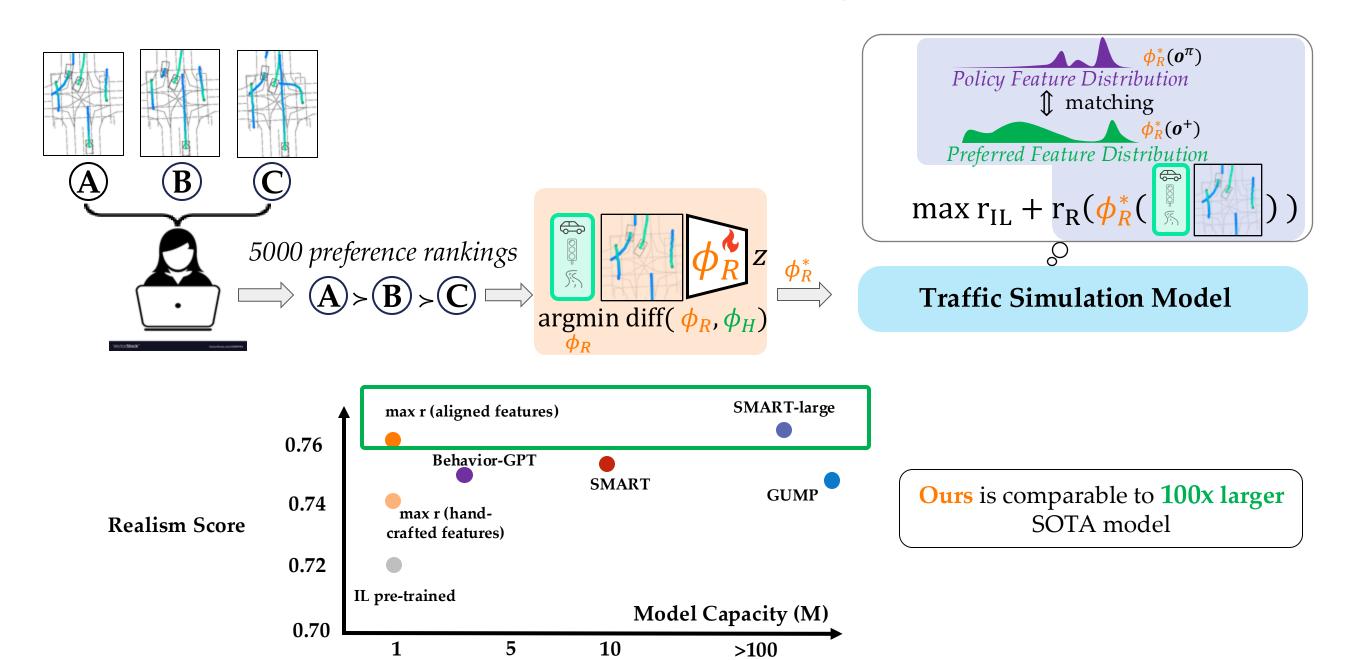


Preference-Alignment with Hand-designed Features





Preference-Alignment with Aligned Features



Takeaways

Model-based principles can help improve frontier robotics foundation models, but we need to "generalize" them to make them compatible with generative AI.

- 1 Robotics foundation model's training objective is only a proxy, we need post-training preference alignment
- We need robot representations to understand what "matters" to us
 - Require **10x less** human budget to achieve high preference alignment in robotics manipulation
 - Make a 1M traffic model comparable to 100x larger SOTA model after alignment with only a fraction of human data

