
16-867

Human Robot Interaction

Introduction

Instructor: Andrea Bajcsy

Welcome!

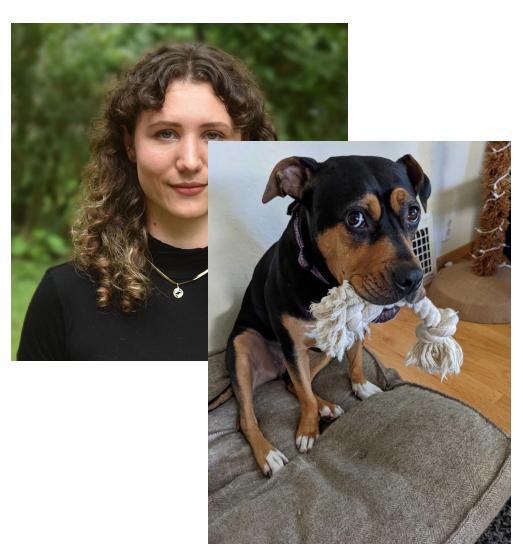
Professor

Andrea Bajcsy

(BYE-chee)

What to call me:

• Andrea (if you are a grad student)


• Prof. Bajcsy or Prof. B (if you are undergrad)

Office Location: NSH 4629

Office Hours: Tuesdays, 12:20-1:20pm (after class)

Email: abajcsy@cmu.edu

Professor

Andrea Bajcsy

Fun fact: I have a dog named Cheerio... she likes to sit like a human sometimes!

Teaching Assistant

Yilin Wu, PhD Student

Research Interests:

- open-world, learning-based manipulation
- human-robot alignment

Office Location: NSH TBA

Office Hours: TBA

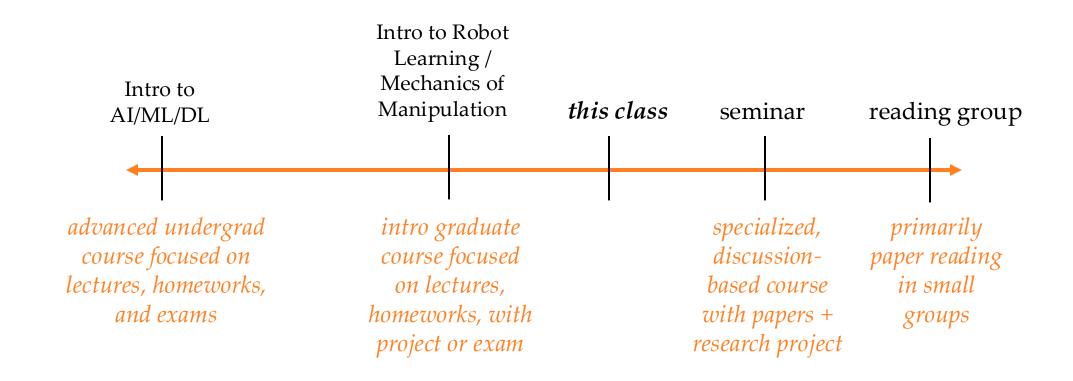
• please take survey on Canvas so we can select OHs that suit folks best!

Email: yilinwu@andrew.cmu.edu

Teaching Assistant

Fun fact: I love tennis! I'm a big fan of Roger Federer, but I only started playing tennis after he retired

What is next?


Course Content

Logistics

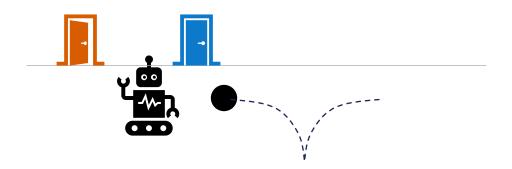
Intro Survey

(Intro to Single-Agent Decision Making)

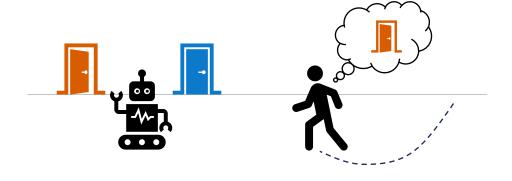
What exactly is this class?

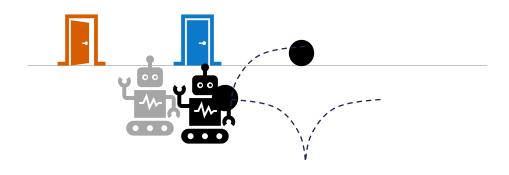
What makes human-robot interaction different from "typical" robotics?

Small group activity (5 min)


Turn to your neighbor(s), introduce yourself, and discuss:

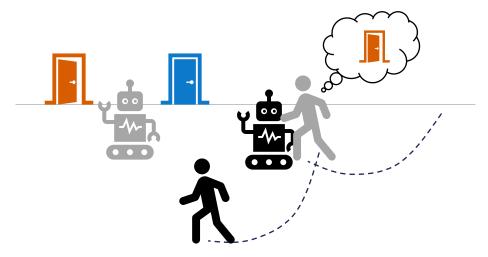
What makes human-robot interaction different from "typical" robotics?


US.

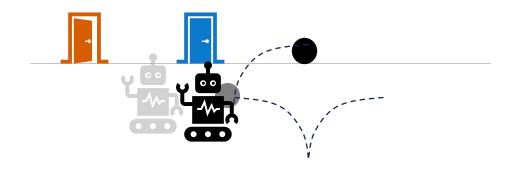


Environment driven by laws of physics

Human Interaction

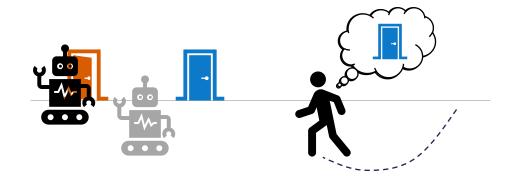


Human driven by physics and hidden internal objectives

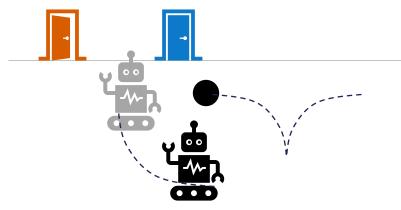


Environment can *be influenced* by robot's actions **directly**

Human Interaction

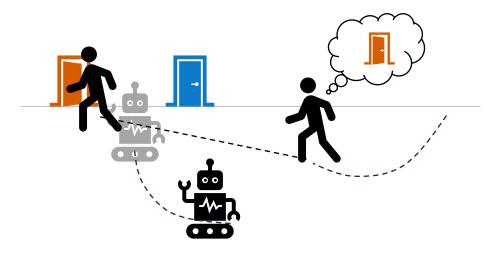


Human can *be influenced* by the robot's actions **directly...**

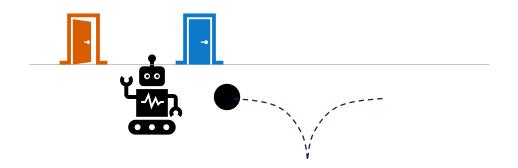


Environment can *be influenced* by robot's actions **directly**

Human Interaction

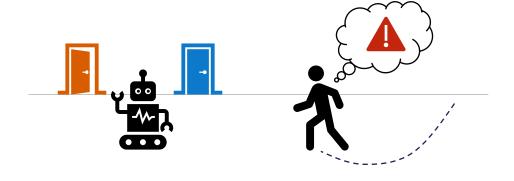


Human can *be influenced* by the robot's actions and **indirectly**

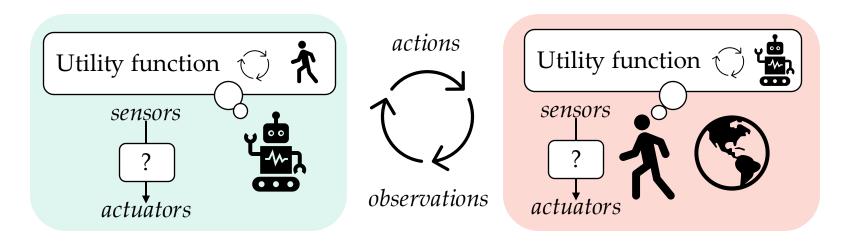


Environment can *influence* the robot's actions **indirectly**

Human Interaction



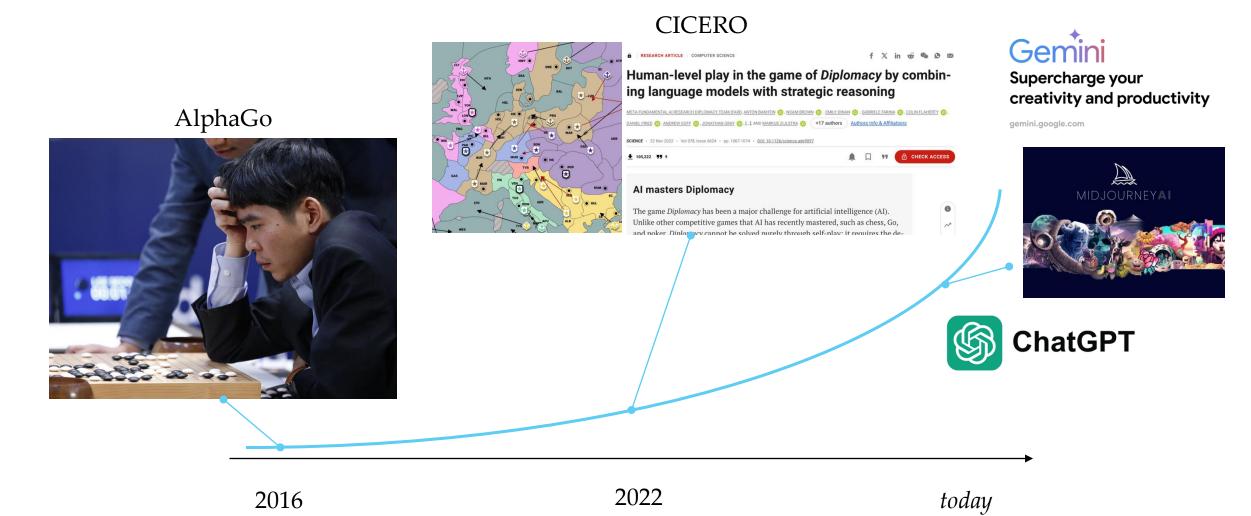
Human can *influence* the robot's behavior **directly or indirectly**


"Environment" is not a stakeholder

Human Interaction

Human is a stakeholder! (e.g., wants to derive value from robot)

How is algorithmic HRI different?

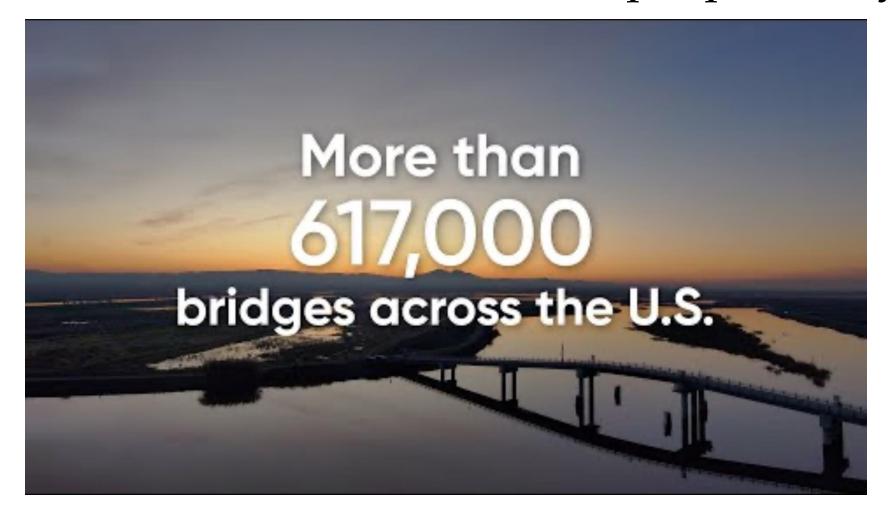

	See	Think	Act
Robotics	Detect objects, colors, estimate distances, poses, geometry, etc.	Plan / optimize for own utility function	Execute motor commands (e.g., based on physics models)
HRI	Detect objects, colors, distances, poses, geometry, etc. Estimate human's utility, intent, preferences, strategy/style	 Plan / optimize for Own utility function Adapting / coordinating with human Influencing human belief about the world or robot 	May adjust execution dynamically based on human feedback (e.g., force feedback corrections)

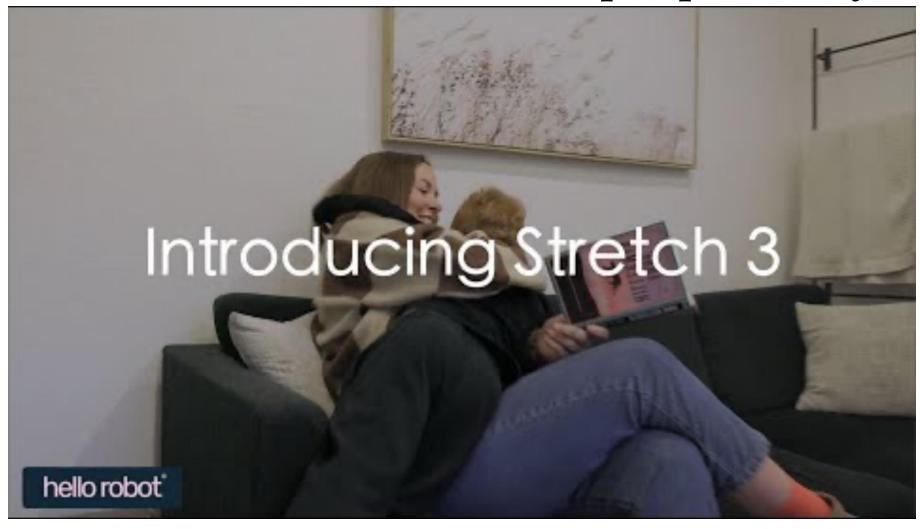
But this seems really hard to encode into our algorithms...

Where are people interacting with advanced autonomy the *most* right now?

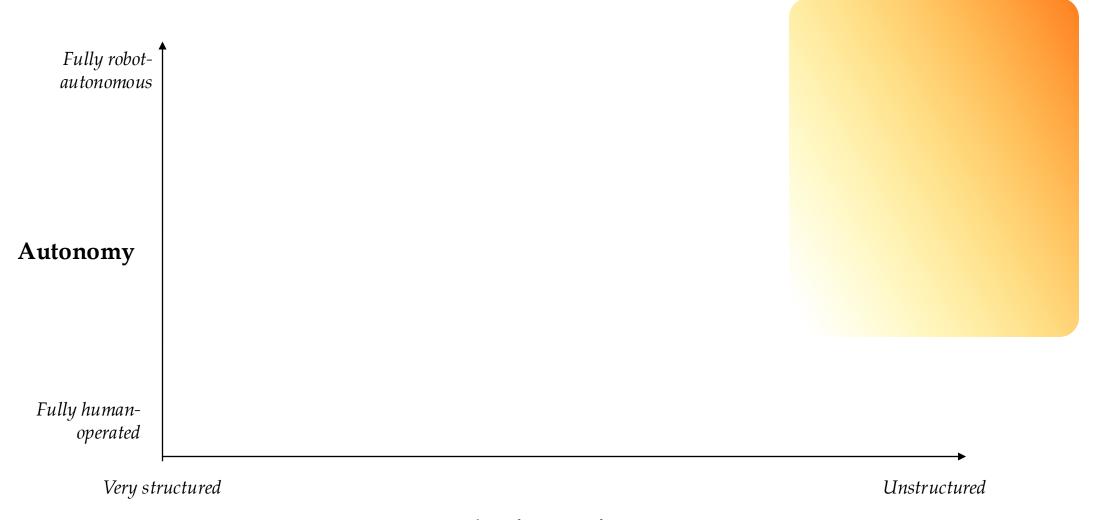
Exciting time for *interactive* Artificial Intelligence!

But where are the interactive **robots**?



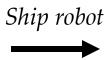


Here is where we are in AI...


Here is where we are in robotics...

We want to get here!

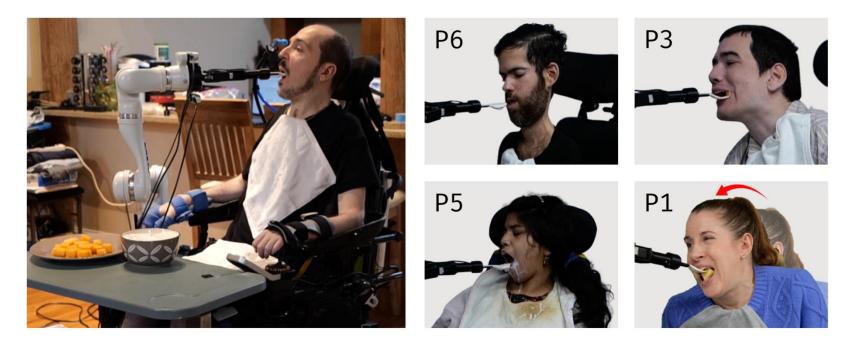
Think: Why are robots not in millions of homes?



1. The way we program robots is rigid

Not flexible enough to be used by everyday users for everyday tasks; requires expert knowledge

Engineers Design Behaviors

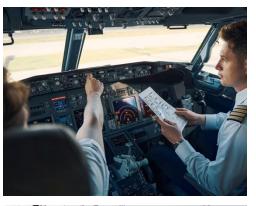


Users can't easily expand capabilities, or experience unexpected failures!

2. Hard to write down what "matters" to people

- Autonomy: hard to design robot policies that behave according to what end-users want
- **Evaluation:** hard to write metrics that correlate with what end-users want

"Feel the Bite: Robot-Assisted Inside-Mouth Bite Transfer using Robust Mouth Perception and Physical Interaction-Aware Control." Jenamani, et al. (2024)


3. Hard to model human interaction

Human behavior is diverse: varying between individuals, environments, and over time

Why this course?

Take any robot application and ...

- 1) **Model / quantify** human interaction with robots
- 2) **Solve** robot decision-making algorithms that are informed of/by people
- 3) **Identify** the frontiers of human-robot interaction

What you will learn in this course

Foundations

Single & multi-agent decision-making (MDPs, POMDPs, RL) Intent inference & expression Reward & policy learning Experimental design

Prediction for Action

Trajectory forecasting
Collaboration, assistance, shared autonomy
Game theory

Learning, Alignment, and Safety

Alignment
Representation learning
HRI in Era of Foundation Models
Active learning
Safety & uncertainty quantification

Guest Lectures

Trajectory Forecasting

Ingrid Navarro
Senior PhD Student @ CMU

HRI in the Era of Foundation Models

Sidd Karamcheti Toyota Research Institute | Incoming Prof @ Georgia Tech

Active Learning

Erdem Biyik Prof @ USC

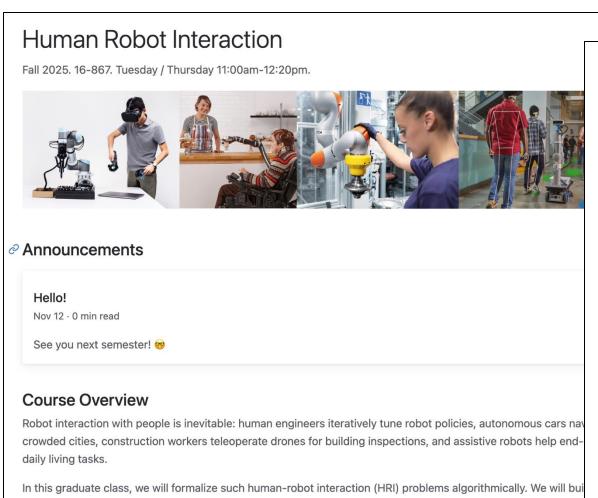
General Resources

- No textbook!
- If I were to recommend textbooks for this class...

Artificial Intelligence: A Modern Approach by Russell and Norvig Reinforcement Learning by Sutton and Barto Probabilistic Robotics by Thrun, Burgard, Fox Dynamic Noncooperative Game Theory by Başar and Olsder Humans and Automation by Sheridan

Course Logistics

Format: lecture or related paper reading discussions


Typical 80-min class:

5-10 min logistics and recap

70 min lecture, invited talk, or paper discussion

Use course website for up-to-date schedule & paper links

https://abajcsy.github.io/human-robot-interaction/

Schedule (Tentative) Foundations Aug. 26: **Course Overview** Syllabus **Single-Agent Sequential Decision-Making** Aug. 28: Sept. 2: **Value Iteration, Reinforcement Learning** Sept. 4: POMDPs, Probability, Bayesian Inference Goal Inference as Inverse Planning **Intent Inference & Expression** Sept. 9: Sept. 11: **Intent Inference & Expression** PAPER READING Expressing Thought, **Functional Expressive Motion** Sept. 16: **Reward and Policy Learning** Sept. 18: **Experimental Design & Statistical Analysis** A Primer for Conducting Experiments in Human-Robot Interaction Prediction for Action **Trajectory Forecasting (Ingrid Navarro, CMU)** Sept. 23: **GUEST LECTURE Trajectory Forecasting** Sept. 25: PAPER READING Confidence-Aware Prediction, ManiCast Collaboration, Assistance, & Coordination Sept. 30:

Please read the *Syllabus* on the *course website*

https://abajcsy.github.io/human-robot-interaction/

Syllabus

TABLE OF CONTENTS

- 1 Overview
- 2 Logistics
- 3 Prerequisites
- 4 Attendance
- 5 Academic Integrity
- 6 Late Policy
- 7 Accommodations for Students with Disabilities
- 8 Communication
- 9 Grading
- 10 Paper Discussion Days
- 11 Health & Wellness

Overview

Robot interaction with people is inevitable: human engineers iteratively tune robot policies, autonomous cars navigate through crowded cities, construction workers teleoperate drones for building inspections, and assistive robots help end-users with daily living tasks. In this class we will formalize such human-robot interaction problems algorithmically. We will build the mathematical foundations for modeling human-robot interaction across robots and tasks, enable robots to understand human intent and predict human behavior, and study how robot learning

Also: Helpful answers to FAQs!

https://abajcsy.github.io/human-robot-interaction/

FAQ

TABLE OF CONTENTS

- 1 I don't have access to robots! What can I do?
- 2 I don't have access to compute! What can I do?
- 3 For my class project, I want to test an algorithm with people. Do I need to run a formal user study?
- 4 How can you effectively read a research paper?
- 5 How do you write a good research paper?
- 6 How do I make nice figures for a paper or talk?

I don't have access to robots! What can I do?

If you want to use **physical hardware**, consider using the <u>Al Maker Space</u> in Tepper for your projects! To get more info, you can contact the Al Maker Space manager: Greg Armstrong at ai-makerspace@cs.cmu.edu.

If using physical hardware is infeasible for your project, consider using **simulation** or **benchmark datasets** for controlled testing and algorithm design. Some relevant resources include:

Autonomous Driving

- · CARLA driving simulator with urban layouts, buildings, vehicles, and sensors
- CARLO a lightweight 2D version of CARLA

Use Canvas for downloading / uploading assignments

Fall 2025

Home

Announcements

Syllabus

Assignments

Quizzes

Grades

Discussions

Files

People

Zoom

NameCoach

Syllabus Registry

Pages

Outcomes

Ø

Collaborations Ø

Rubrics

Modules Ø

Recent Announcements

Human Robot Interaction

& Assign To

™ Edi

Welcome to 16-867: Human-Robot Interaction!

Robot interaction with people is inevitable: human engineers iteratively tune robot policies, autonomous cars navigate through crowded cities, construction workers teleoperate drones for building inspections, and assistive robots help end-users with daily living tasks.

In this graduate class, we will formalize such human-robot interaction (HRI) problems algorithmically. We will build the mathematical foundations for modeling human-robot interaction across robots and tasks, enable robots to understand human intent and predict human behavior, and study how robot learning changes in the presence of human feedback. The approaches covered will draw upon a variety of disciplines and tools such as sequential decision-making, cognitive science, Bayesian inference, and modern machine learning. Throughout the class, there will also be several guest lectures from experts in the field. Students will practice essential research skills including reviewing papers, writing project proposals, and technical communication.

Grading

See class syllabus on course website for detailed info

Percentage	Activity	
10%	Attendance & Participation	
20%	HW (2x)	
10%	Paper Summaries	
5%	Project Proposal	
20%	Midterm Project (Report + Presentation)	
35%	Final Project (Report + Presentation)	

Attendance & Participation (10%)

Expected to attend class in person—this is how we will all get the most out of the class! <u>Please show up on time</u>, especially for reading days

The way we grade this:

- <u>First 5 minutes of class:</u> we will give a **short, easy "quiz"** related to the last lecture's content. This is graded as 1/0.
 - e.g., "Describe what is a sequential decision-making problem."
- **Permitted 2 unexcused absences**, no questions asked, before being docked.

I understand that occasionally you may have challenges attending (e.g., illness, religious observance,..); **please let me know.**

Homework (20%)

HW #1: Intent Inference & Expression

Released: ~Sept 4

Due: Sept 18

HW #2: Human-Robot Alignment

Released: ~Nov. 4

Due: Nov. 13

These are coding-based homeworks in **Python** and **PyTorch**. They are *not* meant to be tedious; they are meant to **empower** you! ☺

If you are not confident (or are rusty) with Python and Pytorch, please come see us for educational resources!

Paper Summaries (10%)

Paper discussion days:

8 paper reading days

2 papers per reading day

Prediction for A	ction		
Sept. 23:	GUEST LECTURE Trajectory Forecasting (Ingrid Navarro, CMU)		
Sept. 25:	Trajectory Forecasting	PAPER READING Confidence-Aware Prediction, ManiCast	
Sept. 30:	Collaboration, Assistance, & Coordination		
Oct. 2:	Shared Autonomy	PAPER READING Shared Autonomy via Hindsight Optimization, LILA	
Oct. 7:	HRI as a Game		
Oct. 9:	HRI as a Game	PAPER READING Planning for AVs that Effect Humans, Long-term Robot Influence on Humans	

Before class:

Answer three questions about the paper:

- 1) What assumptions were made about (a) robot, (b) human, (c) their interaction
- 2) What extensions would you propose? Scope & justify
- 3) What do you like about this work?

Must submit on Canvas before class.

In class:

Split you into small groups, discuss set of questions, I assign a representative from each group to present on the group's takeaways, and the whole class can engage on the answer

Two options:

Research project:

Identify a research direction broadly relevant to this class Propose and take first steps towards an original idea

Literature survey:

Select a topic area and rigorous way in which you will find papers Characterize this topic area in an <u>insightful way</u> (e.g., open questions, common assumptions, tractable vs. theoretical gaps)

You must work in a group of min 2 to max 5 people. Explicit permission from Andrea must be granted if you want to work on an independent project

Example of good literature survey

Human Motion Trajectory Prediction: A

©The Author(s) 2019 Reprints and permissi

Andrey Rudenko^{1,2}, Luigi Palmieri¹, Michael Herman³, Kris M. Kitani⁴, Dariu M. Gavrila

of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and

systems to coexist and interact with humans. It involves communities and propose a novel taxonomy based on the aspects in representation, perception and motion analysis. motion modeling approaches and the contextual cues. We Prediction plays an important part in human motion analysis:

categorize the state of the art and discuss typical properties

When picking a project, make sure to answer the question:

How does the project connect to the broader topics & context of the class?

- Examples of projects within scope (non-exhaustive list!)
 - Applying one of the techniques from class to your problem domain
 - (e.g., using game-theory for pedestrian prediction, using RLHF to align an assistive AI agent, developing a new shared controller)
 - Rigorously comparing two methods that seek to solve the same problem
 - (e.g., RLHF vs. DPO for aligning a diffusion policy, running a pilot human study to compare 2 shared controller designs)
 - Posing (and solving) a new algorithmic HRI problem for your problem domain
 - Challenging an assumption underlying one of the methods in the class

When picking a project, make sure to answer the question:

How does the project connect to the broader topics & context of the class?

When in doubt: come talk to us about your interests and we can help!

A Examples of projects <u>not</u> within scope

- No clear connection to human interaction
 - e.g., a new self-supervised learning method for image classification; a robot motion planner for doing assembly tasks
 - To make them in scope: e.g., using human feedback to improve an image classification algorithm; robot motion planner which takes as input natural language descriptions of the assembly task
- No clear connection to robotics / AI
 - e.g., designing a new user interface for a mobile phone
 - To make them in scope: e.g., designing a new interface for humans to program robot behavior

Project Proposal (5%) – <u>due</u>: Sept. 30

1. Report: max 1 page project pitch

Mid-term Project (20%) – <u>due</u>: Oct 23

- 1. **Report:** max 4 page writeup of progress
- 2. In-class Oral Presentation: short conferencestyle project pitch (~3-5 mins)

Final Project (35%)

- 1. **Report:** max 6 page writeup of findings due: Dec 11
- 1. In-class Oral Presentation: short conferencestyle lightning talk pitch (~8-10 mins) due: Dec 1

Project Proposal (5%) – <u>due</u>: Sept. 30

1. Report: max 1 page project pitch

Mid-term Project (20%) – <u>due</u>: Oct 23

- 1. **Report:** max 4 page writeup of progress
- 2. In-class Oral Presentation: short conferencestyle project pitch (~3-5 mins)

Final Project (35%)

- 1. Report: max 6 page writeup of findings due: Dec 11
- In-class Oral Presentation: short conferencestyle lightning talk pitch (~8-10 mins)
 <u>due</u>: Dec 1

Project Proposal

ign To 📉 Edit

This is a brief (maximum 1 page, excluding references) project pitch. You can think of this as an extended abstract: you want to motivate the topic you have chosen and answer some key brainstorming questions about your directions.

Please use the attached Latex template and answer the questions below (which are also in the template):

- <u>Motivation</u>: describe the context of your project. What is the setting / environment, tasks, or humanrobot interaction you are considering, etc? Who do you think will be most interested in your project? What will your project enable in the future?
- Open Challenge(s): what is the core challenge (or challenges) you want to tackle? What makes your
 problem hard? What has been holding us back from solving this; i.e., why don't we have an answer to this
 yet?
- <u>Proposed Approach:</u> brainstorm some approaches you may take to tackle the challenges. why are these approaches promising or feasible? how will you measure success?
- Risks: what are some risks or roadblocks you anticipate?

Latex Template (zip file): <u>project-proposal-latex.zip</u>

Project Proposal (5%) – <u>due</u>: Sept. 30

1. Report: max 1 page project pitch

Mid-term Project (20%) – <u>due</u>: Oct 23

- 1. **Report:** max 4 page writeup of progress →
- **2. In-class Oral Presentation:** short conference-style project pitch (~3-5 mins)

Final Project (35%)

- Report: max 6 page writeup of findings due: Dec 11
- In-class Oral Presentation: short conferencestyle lightning talk pitch (~8-10 mins) due: Dec 1

Mid-term Report

This is intended as a checkpoint to ensure that you are making progress towards your final project. The report length should be a typical robotics workshop paper (maximum 4 pages, excluding references).

Please use the attached Latex template and follow the structure of the subsections.

Latex Template (zip file): midterm-report-latex.zip

✓

Project Proposal (5%) – <u>due</u>: Sept. 30

1. Report: max 1 page project pitch

Mid-term Project (20%) – <u>due</u>: Oct 23

- 1. **Report:** max 4 page writeup of progress
- 2. In-class Oral Presentation: short conferencestyle project pitch (~3-5 mins)

Final Project (35%)

- 1. In-class Oral Presentation: short conferencestyle lightning talk pitch (~8-10 mins) due: Dec 1

Final Project Report

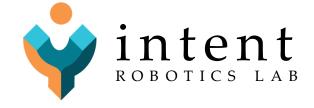
The final report should present your final findings in a research or survey paper format. The length should be maximum 6 pages, double-column. The grade will be determined based on the content quality and not on the absolute length (please see the grading rubric below).

Please use the attached Latex template and follow the structure of the subsections.

Latex Template (zip file): final-report-latex.zip

Survey (5 min)

https://forms.gle/SPqv62u1EyC9SFHt9


16-867

Human Robot Interaction

Introduction

Instructor: Andrea Bajcsy

