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Reward learning
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Reward learning vs Policy learning
It's often easier to demonstrate good behavior than to

manually encode it into a MDP model

e in autonomousdriving it is hard to write down a reward
function that models your personaldriving style

Assume we are given some trajectory demonstrations
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INVERSE REINFORCEMENT LEARNING IRL aka Inverseoptimalcontrol

Renal Forward Reinforcement learning

Given SES a EA sometimes p s Sia resia

God learn als sit

argmyx Eitristinist
over P SEA1St T

Éffen ses act sometimes PCs is a ANI
Humont

D Gi demonstrations from

Goal learn refanEat then use it to learn

Wait but how do I search over all reward functions to
find the best one given my dataset D
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Relaxes the assumption that Yp is perfect but it still
allows the robot to learn its reward



Key idea is to treat demonstrations as assertions drawn

from some distribution that models the demonstrator as
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How do we find 0 ie the reward parameter givenD 3,1
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FAI if OER is continuous then its not tractable to have

an exact posterior then you compute instead the

maximum Lillihoodestimate via gradientdescent
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Behavior cloning BC

The simplest algorithm to run on your dataset D 3
Train a model e.g NN to predict expert actions

given observed states treating it as if it was supervised
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