Last Time:

- 1) reward learning
- D policy learning

lecture 8 4RI, FAU 25 Andrea Bajosy

This Time:

- D Experimental Design
- D Statistical Analysis

User Studies i Experiments

, all user experiments are user studies but not all user studies are experiments!

what is a user study or experiment?

Lo user study is a broad term for any research conducted to understand users

Lo user experiment is a specific type of user study that lests hypotheses via a controlled design, treating users as participants in a structured investigation

ex. interviewing users about their experiences of a voice assistant binteriew-based user study

measuring whether AI response time affects perciened to the AI system.

Terms are often used interchangeally in the field, but its important to know the difference.

Why do user studies lexperiments?

- validate that a system works as expected
 compare 2+ systems or algorithms
- · explore a phenomenon to develop a research &
- · collect training data for a model / algorithm

How to conduct user studies/experiments:

- 1. Define the research question and hypotheses experimental design
- 2. Design a study to address &s
- 3. Execute the study
- 4. Analyze data from the study
- 5. Draw conclusions from the analysis

statistical analysis

GXPERIMENTAL DESIGN

What is an experiment vs. what is a Good experiment?

1. What is an experiment? "The Arrangement of Field Experiments"

→ ORIGINS: - Agriculture: comparing different fertilizers to determine which => better crops (Fisher, 1926)

- medical Research: testing a drug's effectiveness

> OUR FOCW: designing experiments to compare robot behaviors) algorithms / policies/models i their effects on human collaboration / perception

3 COMPONENTS:

treatments (conditions)

- · drug vs. placebo · random vs. optimal
- · IRL policy vs. BC policy

responses (measures)

- · symptom progression
- · success rate

experimental mits (subjects)

- patientshuman users
- · MDP problems

assignment methods (subject allocation)

- · random (drug, placeb.)
 · every user sees both
 · every MDP "sees" both

let's operationalize these:

· <u>Independent Variables</u> (IV) → Conditions Ly what you manipulate ex. dug type, motion type, algo.

Lo IV's houre levels: -2 levels: drug rs. no drug -3 levels: 100 mg vs. 200mg vs. 300 mg

Dependent Variables (DV) -> measures

It what you measure ex. symptoms, confort, takence.

Les DV's can be objective (success rate, time) and

subjective (surveys)

· Population -> subjects

La how many (i.e. size of population)?

Is who le.g. age, gender, education, tech. experience)?

=> Blc we work with people, we need to abide by relearch ethics; i.e. protect participants from physical 1 mental/emotional harm, violations of privacy is confidentiality, feeling forced to start or continue.

a) every stray needs approval from Internal Review Board (IRB)

=> Before study starts, we obtain informed consent from all participants. . tells user about task, risks, benefit, rights

· gets confirmation of voluntary participation

· Assignment

Lo between-subjects: one condition per user

- -> useful if participants seeing multiple levels is a problem (i.e. bias)
- -> good for large participant pools or short stray sessions
- within-subjects: user experiences all conditions
 - accounts for interpersonal variability

- -> efficiently uses your participant pool
- -> suceptible to ordering effects (might want to randomize)
- Ly mixed subjects
- => ASK YOURSELF: would seeing multiple conditions be problements? Is there alof of interpersonal variability? How many participants are available?

· Hypothesis

Ly (weak) IV x affects DV

La (stronger) IV x positively affects DV

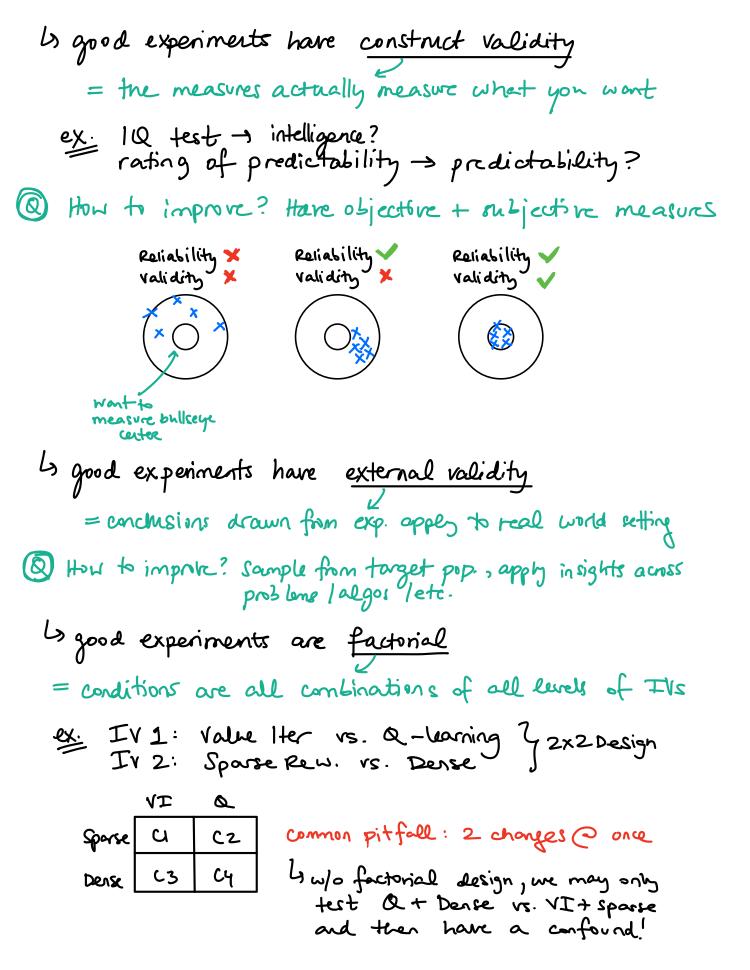
ex. Blc optimal motion is more predictable, we hypothesize:

H1: Optimal robot motions increase user confort

L) Good hypotheses: - make specific predictions
(+ will be supported by data or not)

- are measureable ("better"; sn't measureable)
- address your research a + extract a key insight

H: my also is better than other also. - BAD HYPOTHESIS!


Is think about the IV's! What about your algo is diff. than other algo? How do you quantify "better"? e.g. accuracy?

What is a good experiment?

L's good experiments are <u>controlled</u>

= experimentee assigns experimental units to treatments... as opposed to observational

```
ex left handedness (LH)
obs. study: -2,000 people who recently died y => 4 die (1980s,1990s) - left handed died 9 yrs yanger younger
          what's wrong? changing prevalence of reporting aft handedness
          confound! lefthandedness was condemned in older generations, so majority of people identified as right handed But younges generations naturally show higher proportion of people who are left handed
  is good experiments avoids confounds
                   or variable whose effect cannot be distinguished from the effect of the actual IV.
      ex artificial decrease of LH, gender, experience w/nosots, algorithm hyperparameters
     How to <u>avoid</u> confounds?
  -> Between subjects: randomized group assignment
            ex: if 50 participants and 2 conditions: rand.assign. 25 to condition 1 and 25 to condition 2.
 NOTE: randomized + haphazard - want similar populations per condition
 -> Within subjects: counter-balance the condition
     Order 1: Alg. A, Alg. B
                                               N conditions => N! orderings
     order 2: Alg-B, Alg. A
  -> pre-study practice: unrecorded familiarization stage
 Ly good experiments are reliable
      = low experimental error (low variance) -> repeating produces similar outcomes
```


STATISTICAL ANALYSIS

(1) "Has the DV changed as a result of manipulating IV?"

ex. 1 IV (alg), 2 levels (algo, alg 1), within subjects (2 mpp Problem)

	, P1V	, OV			
MDP Problem	level	Total Reward		MDP	Diff Reward
"participat [1	O	lo		1	2
Par la	1	8	\rightarrow	2	4
a dicipant (2	70	11		7	•
"porticipant of 2" 2 2	1/21	7		for each	participant, calculate
	now/participant behaved under o			diff. Ltwn	their pre & post interestion
	' how trey	behand under 1			COR

t-test: what's the probability 2 populations are different from each other?

C"null hypothesis" a Statement of no effect Ho: $\mu_1 = \mu_2$ (the population means are equal)

H1: 11 + 12 (the population means are not equal)

ex:
$$h=2$$
, $X_{diff} = \frac{244}{2} = 3$, $S_{diff} = \sqrt{\frac{(2-3)^2 + (4-3)^2}{2}} = 1$
 $t = \frac{3}{1/\sqrt{2}} = 4.2426$
 $df = h-1 = 1$

"degrees of freedom"

You use the combo of (t, df) to obtain a p-value (via a lookup table, or statistical software)

- p-ralue: probability of obtaining a result at least as extreme as the results actually observed, assuming the null hypothesis is true.
- Intuitively: determines if observed result is likely due to chance or a real effect
- > small p-value > observed results are unlikely to (e.g. \(\) 0.05) have occurred by chance i provides erough evidence to reject to
- -> large p-value => observed results are likely due (e.g. > 0.05) to chance; con't reject Ho
- 4 if p = 0.02 then there is 2% chance of observing results as extreme as the ones obtained, if the is true.
- a small p-value does not prove alternative hypothesis is true,, just suggests to is unlikely
 - Us in statistics, we aim to falsify the null hypothesis, not to prove the alternative
 - X larger => more confident

 N larger => more confident

 S lafer => less confident
- if DV is binary (categorical rather than continuous: (TIFY (yes/ro/maybe) (reward 6 12)

uce a chi-squared (χ^2) test instead of t-test

• 1 IV, 2 levels, between subjects poined +-test it is)

independent t-test
$$\rightarrow$$
 t = $\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\overline{S}_1^2}{N_1} + \frac{\overline{S}_2^2}{N_2}}}$

· 2IVs, 2 levels each, between subjects (Alg, Robot)

LL Am Vehich G1: BC+Arm G2: BC + rehicle G3: IRL + Arm G4: IRL + Vehicle If we decided to run +-tests, for all pairwise comparisons of K=4 groups, we need: # comparisons = $\frac{k(k-1)}{2} = \frac{4(3)}{2} = 6$ I should we do this? 6 +-tests? No! Increases Type I error rate (i.e. false positives) ex. one t-test has a 5% chance (p=0.05) of falsely rejecting to live detecting significance). If you do 100 + -tests: each test indep. of next P(error_1 or error_2 ... or error_100) = 1 - P(correct, AND ... correct,00) "P(make ≥ 1 enor)" = $1 - 0.95^{100} = 0.9941$!

Que 99.41% chance you falsely reject to Some Solutions: (4) Bonferoni correction: adjust significance level by # of compaisons if d=0.05 then now d=d/m, m=# compaisons ex: m= 6 from example above, \$\overline{\pi} = 0.0083 overy conservative (& increased risk of Type II error)
i.e. false regatives

(B) Tukey's HSD (Honestly Significant Differences):
apply a single test to compare all groups @ once.

- For Factorial Designs <u>or</u> IV with >2 levels <u>ANOVA</u> (Analysis of Variance)
 - A) always run an ANOVA first as a precursor to making multiple comparisons
 - Is it tells you if there is a difference, but not where the difference is
 - main effect: the effect of each IV individually
- interaction effect: how IVs combine to influence DVc

 If there is an interaction effect or the main effect

 is not clear, then run a "post-hoc" test

 Ce.g. Tukey's HSD) to see which groups differ.
- Use a <u>one-tailed ANOVA</u> to test diff. in a Specific direction (ex. method A leads to higher user efficiency than method B)
 - Use a two-tailed ANOVA to test for any significant difference 5two. group means, whether its increase or decrease (ex. there is a diff. both method A and B)