Trajectory Forecasting

Ingrid Navarro

ingridn@andrew.cmu.edu

Agenda

- What is Trajectory Forecasting?
- Is Trajectory Forecasting Solved?
- Trajectory Forecasting in my PhD

What is Trajectory Forecasting?

Why do we care about trajectory forecasting in robotics?

Trajectory forecasting because helps us understand how humans interact in shared spaces, anticipate their future actions, and use that knowledge to guide safe and effective decision-making and decision-support systems.

Source: KXAN Source: giphy.com Source: Amelia

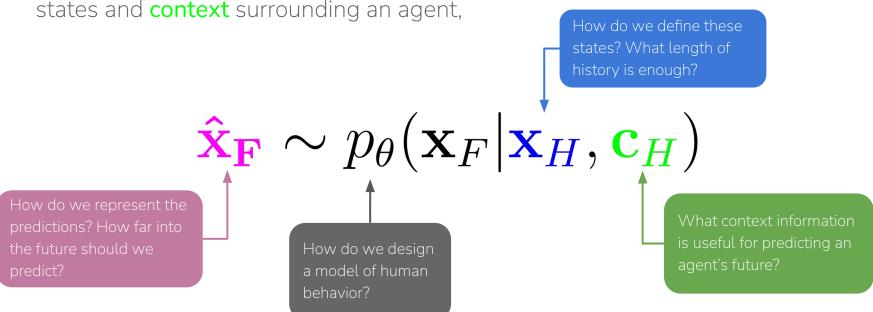
Perception

Planning

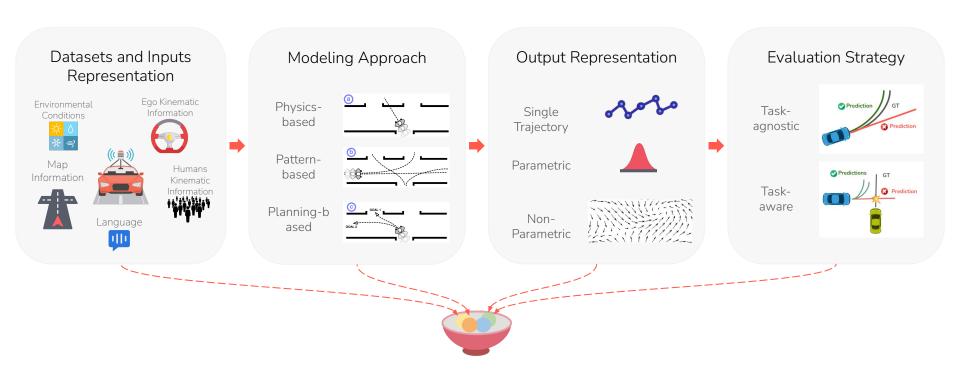
Control

Trajectory Forecasting

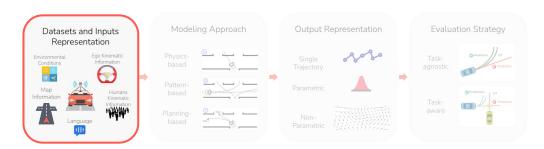
Goal: predict the future states for an agent or set of agents given a history of states and context surrounding an agent



Key Ingredients



Dataset and Inputs Representation



Common domains and use cases

Human Motion

Use cases: service robots, surveillance, sport analysis.

Driving

Use cases: personal self-driving, transportation of goods, traffic management.

Aviation

Use cases: traffic management, decision-support systems for task load reduction.

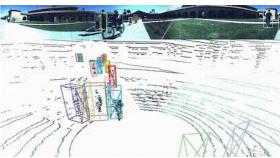
Human Motion

ETH[1] / UCY[2]

Subdomain: Surveillance

Captures human behavior in public spaces, like hotels, universities and stores.

JRDB [3]



Subdomain: Service Robots (Social Navigation)

Captures human behavior in public spaces from a first-person-view.

SportVU Data [4]

Subdomain: Sports

Utilizes a motion capture system that tracks players, balls, referees.

^[1] Lerner, A., Chrysanthou, Y., & Lischinski, D. (2007, September). Crowds by example. In Computer graphics forum (Vol. 26, No. 3, pp. 655-664). Oxford, UK: Blackwell Publishing Ltd.

^[2] Pellegrini, S., Ess, A., Schindler, K., & Van Gool, L. (2009, September). You'll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international conference on computer vision (pp. 261-268). IEEE.

^[3] Martin-Martin, R., Patel, M., Rezatofighi, H., Shenoi, A., Gwak, J., Frankel, E., ... & Savarese, S. (2021). *Jrdb: A dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE transactions on pattern analysis and machine intelligence*, 45(6), 6748-6765.

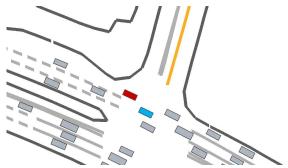
Urban/Highway Driving

LevelXData (inD, exiD, hiD) [1]

Subdomain: Traffic Management

Captures urban settings from a top-down perspective, typically using RGB data. Focus is generally on developing intelligent mobility solutions.

WOMD [2]



Subdomain: Autonomous Driving

Captures urban/highway interactions from first-person view.

MAN Truck Scenes [3]

Subdomain: Autonomous Trucking

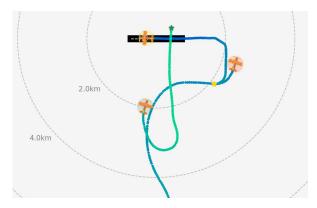
Focus on covering truck-specific surroundings (e.g., container terminals), larger local regions to understand the changes between chassis and cabin.

^[1] LevelXData: https://levelxdata.com

^[2] Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., ... & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9710-9719).

Aviation

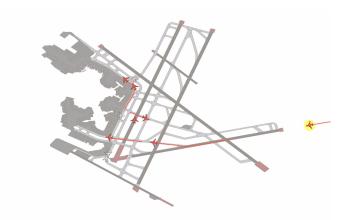
TrajAir [1]



Subdomain: Non-towered Airports

Captures aircraft interaction in a non-towered airport, i.e., airports where there is no centralized coordination via air traffic controllers. Interactions are centralized.

Amelia [2]

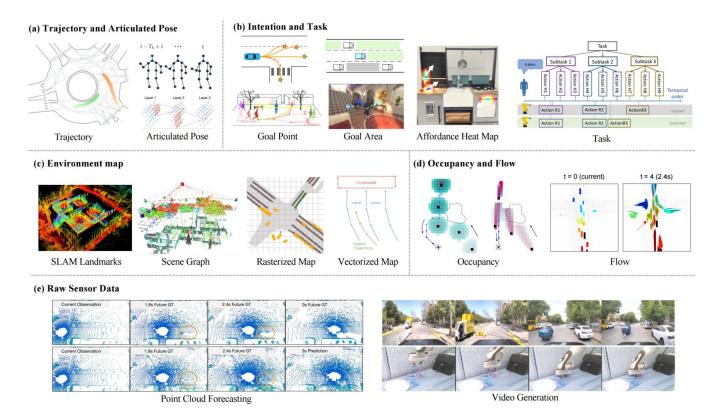


Subdomain: Airport Surface Movement Operations

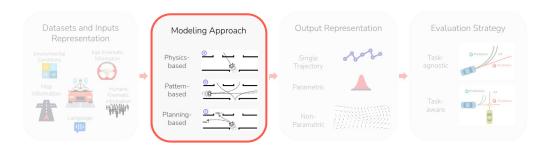
Captures diverse airport operations in terminal airspace. Airports are primarily towered, meaning there is a centralized authority coordinating interactions.

^[1] Patrikar, J., Moon, B., Oh, J., & Scherer, S. (2022, May). Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace. In 2022 international conference on robotics and automation (icra) (pp. 2525-2531). IEEE.

Input Representations

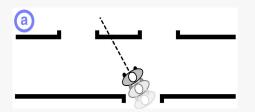


Modeling Approaches



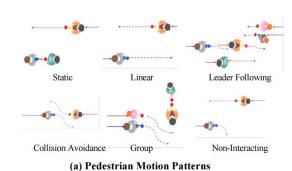
Physics-based Models

Motion is predicted by forward simulating a set of dynamics equations that follow a physics-inspired model.



Generally simple and acceptable under mild conditions, such as short-horizon predictions.

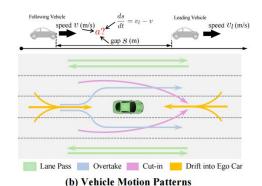
Difficult to effectively design hand-crafted models that account for all environmental and social complexities.

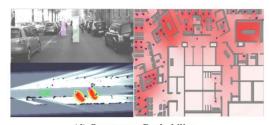


Fresult Social

Social

(c) Social Force Model

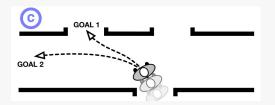




(d) Occupancy Probability

Planning-based Models

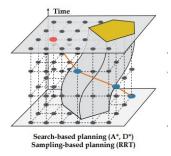
Motion is predicted by explicitly reasoning about the agent's long-term motion goals, and computing possible paths that attain those goals.



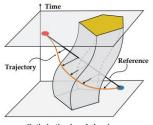
Generally good in structured settings

Often assume agents are rational and make optimal motion decisions. May not generalize well under complex and less structured settings.

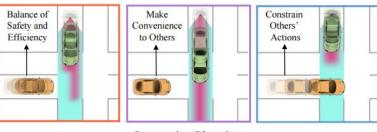
Planning by construction



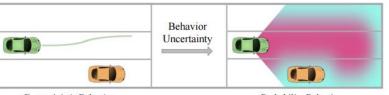
Planning by modification



Optimization-based planning (Elastic band)



Interactive Planning



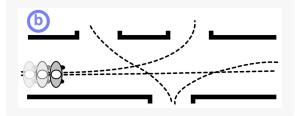
Deterministic Behavior

Probability Behavior

Probabilistic Planning

Pattern-based Models

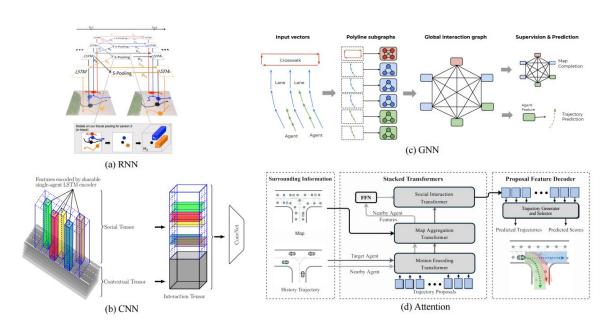
Approximate a dynamics function from data, discovering statistical behavioral patterns.



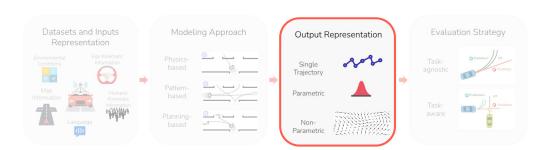
Can capture complex motion patterns directly from the data. More suitable for longer-horizon settings.

Generalizability to unseen settings is challenging.

Main focus of this lecture!



Output Representations



Types of Predictions

Single Trajectory

Model predicts a single, deterministic trajectory.

Parametric

Model outputs the parameters of a probability distribution, or mixture of distributions

Non-Parametric

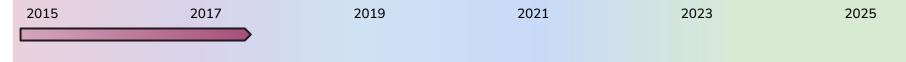
Model outputs trajectory samples without assuming a parametric distribution.

Evolution of Pattern-based Approaches

Pattern-based Approaches Timeline

2015 2017 2019 2021 2023 2025

LSTMs + Social Pooling



Idea: Use recurrent sequence models (LSTMs) to model agent temporal dependencies and add a "social pooling" layer to let hidden states of nearby agents influence each other.

Representative Work: Social LSTM (Alahi et. al, CVPR 2016)

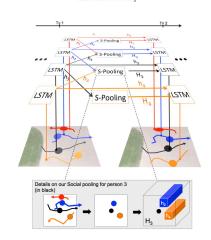
Influence: First type of strategy to replace hand-crafted rules with *learned* interactions. Established a problem formulation that was widely explored by many follow-up works.

Strengths: Handle variable length histories; relatively simple and intuitive; strong performance in short-horizon settings.

Limitations: Unable to represent multiple futures, relied on hand-designed pooling (e.g., k-closest agents).

Social LSTM: Human Trajectory Prediction in Crowded Spaces

Alexandre Alahi*, Kratarth Goel; Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, Silvio Savarese Stanford University



LSTMs + Social Pooling + GANs

Idea: Use GANs to produce multiple plausible futures but also train models adversarially to produce socially plausible trajectories.

Representative Work: Social GAN (Gupta et. al, CVPR 2018)

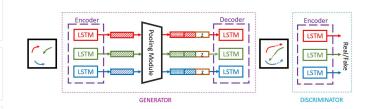
Influence: Addressed the problem of multi-modality

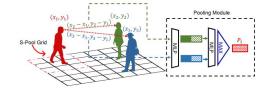
Strengths: Improved sample realism and diversity.

Limitations: Difficult to train, evaluation of diversity/quality/realism was hard; no likelihood associated to a sample.

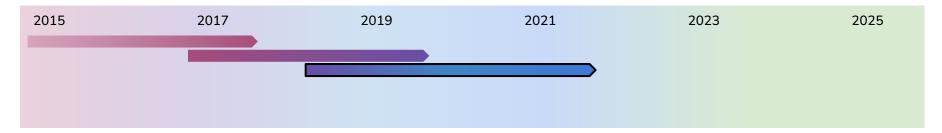
Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

Agrim Gupta¹ Justin Johnson¹ Li Fei-Fei¹ Silvio Savarese¹ Alexandre Alahi^{1,2}
Stanford University¹ École Polytechnique Fédérate de Lausanne²





Structured Stochastic Models



Idea: Represent scenes as spatio-temporal graphs (agents=nodes, interactions=edges), use probabilistic models to decode trajectory information (C-VAEs, VRNN, GMMs).

Representative Work: Trajectron (Ivanovic et. al, ICCV 2019), Multipath (Varadarajan et al, ICRA 2021).

Influence: Enabled conditioning and principled/structured representations.

Strengths: Probabilistic methods for representing multimodality and uncertainty, can incorporate context.

Limitations: Constructing graph-based representations still relied on heuristics. Mode collapse.

The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs

Boris Ivanovic Marco Pavone Stanford University

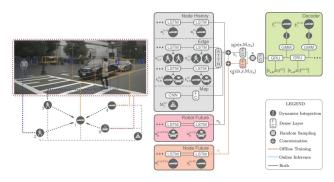
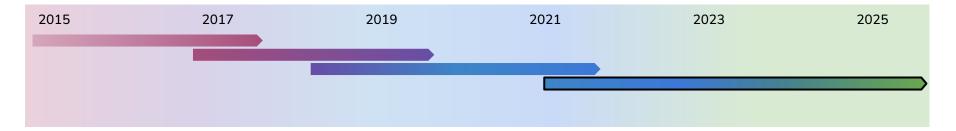


Figure is actually Trajectron++ (2021)

Transformer and Attention-based Models



Idea: Use transformers to jointly model social, temporal and other contextual relationships. Other attention-based models (e.g., GATs) were widely explored here.

Representative Work(s): Agent-Former (Yuan et al, ICCV 2021), Scene-Transformer (Ngiam et al, ICLR 2021), Motion-Transformer (Shi et al, NeurIPS 2022), Wayformer (Nayakanti et al, ICRA 2023), DAGNet (Monti et al, ICPR 2021) and many others.

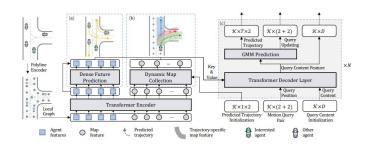
Influence: Attention enabled better, longer-range modeling; worked well with large-scale datasets; enabled much more design flexibility.

Strengths: Parallelizable, good at capturing complex dependencies, longer contexts, easily compatible with deterministic and probabilistic models.

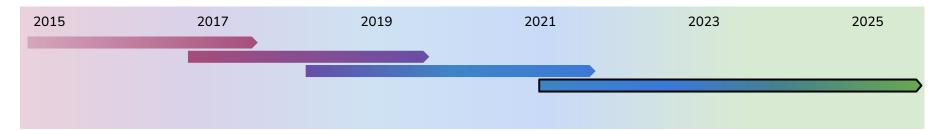
Limitations: Data hungry, computational expensive for larger scenes and context.

Motion Transformer with Global Intention Localization and Local Movement Refinement

Shaoshuai Shi, Li Jiang, Dengxin Dai, Bernt Schiele
Max Planck Institute for Informatics, Saarland Informatics Campus
{sshi, lijiang, ddai, schiele}@mpi-inf.mpg.de



Transformer-based Models



Wayformer: Motion Forecasting via Simple & **Efficient Attention Networks**

Nigamaa Navakanti* nigamaa@waymo.com

kratarth@waymo.com

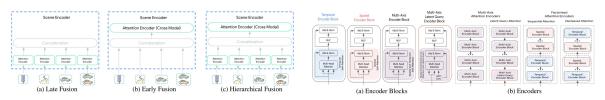
Rami Al-Rfou* rmyeid@waymo.com

krefaat@waymo.com

Aurick Zhou aurickz@waymo.com

Kratarth Goel Khaled S. Refaat

Benjamin Sapp bensapp@waymo.com

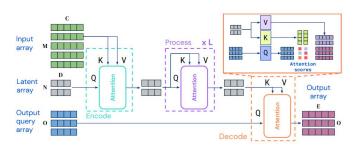


PERCEIVER IO: A GENERAL ARCHITECTURE FOR STRUCTURED INPUTS & OUTPUTS

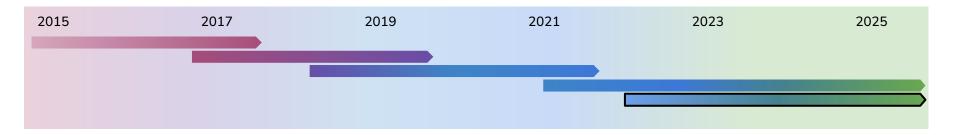
Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alavrac, Carl Doersch, Catalin Ionescu,

David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff,

Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira DeepMind



Diffusion-based Models



Idea: Learn joint distributions by gradually denoising samples.

Representative Work: Scene-Diffuser (Jiang et al, NeurlPS, 2024).

Influence: Enabled controllability, which propelled other subfields like scenario generation.

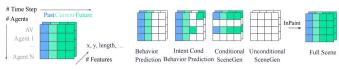
Strengths: Strong sample diversity and realism; flexibility / controllability.

Limitations: Denoising can have a high inference cost.

SceneDiffuser: Efficient and Controllable Driving Simulation Initialization and Rollout

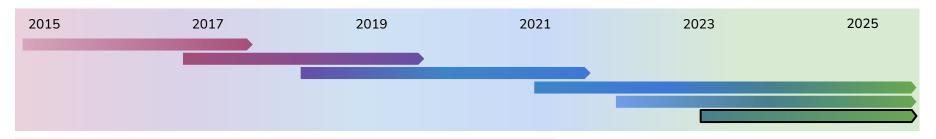
Chiyu Max Jiang Yijing Bai* Andre Cornman* Christopher Davis* Xiukun Huang*
Hong Jeon* Sakshum Kulshrestha* John Lambert* Shuangyu Li* Xuanyu Zhou*
Carlos Fuertes Chang Yuan Mingxing Tan Yin Zhou Dragomir Anguelov

Waymo LLC



The Scene Tensor Multi-task Inpainting

Trajectory Forecasting + Large Models



Idea: Use LLMs/VLMs to inject high-level reasoning priors into trajectory forecasting models.

Representative Work: TBD. See figure on the left for a taxonomy.

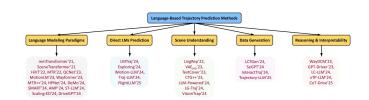
Influence: Providing predictors with strong commonsense and open-world reasoning.

Strengths: Strong zero-shot, few-shot reasoning; flexible conditioning.

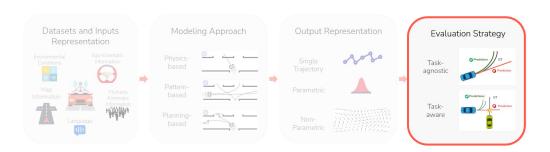
Limitations: Computationally expensive; prone to hallucinations; often not great at spatial reasoning.

Trajectory Prediction Meets Large Language Models: A Survey

Yi Xu Ruining Yang Yitian Zhang Yizhou Wang
Jianglin Lu Mingyuan Zhang Lili Su Yun Fu
Department of Electrical and Computer Engineering, Northeastern University

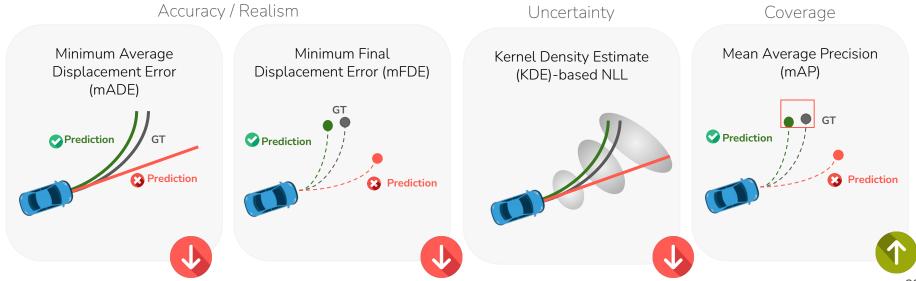


Evaluation Strategies



Task-Agnostic Evaluation

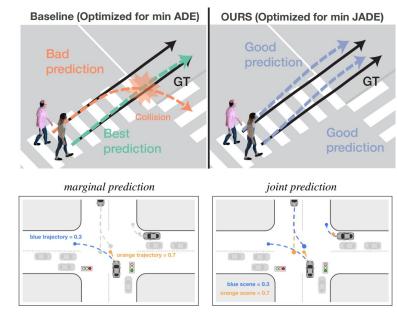
Metrics that focus on quantifying the similarity between the predicted and ground truth motion, but also capture the multi-modality of human behavior.



Task-Agnostic Evaluation

However, single-agent metrics do not capture joint performance, which can lead to unnatural and inconsistent predicted social behavior, e.g.;

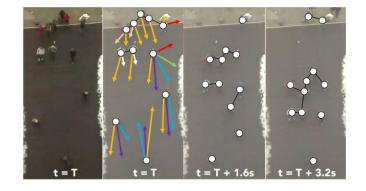
- Colliding trajectories
- Diverging trajectories for social groups



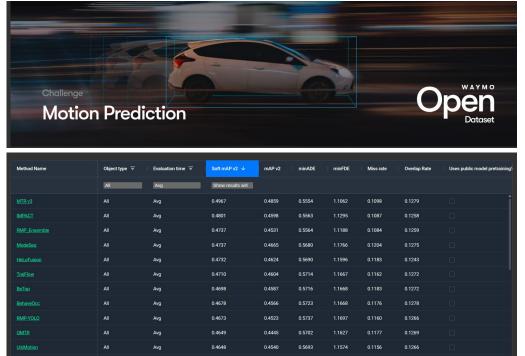
Sources: top figure [1], bottom figure [2]

Benchmarks: ETH / UCY (Human Crowds)

Method	ADE ₂₀ /FDE ₂₀ \downarrow (m), $K = 20$ Samples					
	ETH	Hotel	Univ	Zara1	Zara2	Average
SGAN [15]	0.81/1.52	0.72/1.61	0.60/1.26	0.34/0.69	0.42/0.84	0.58/1.18
SoPhie [44]	0.70/1.43	0.76/1.67	0.54/1.24	0.30/0.63	0.38/0.78	0.54/1.15
Transformer-TF [12]	0.61/1.12	0.18/0.30	0.35/0.65	0.22/0.38	0.17/0.32	0.31/0.55
STAR [55]	0.36/0.65	0.17/0.36	0.31/0.62	0.26/0.55	0.22/0.46	0.26/0.53
PECNet [34]	0.54/0.87	0.18/0.24	0.35/0.60	0.22/0.39	0.17/0.30	0.29/0.48
Trajectron++ [45]	0.39 /0.83	0.12/0.21	0.20/0.44	0.15 /0.33	0.11/0.25	0.19 /0.41
Ours (AgentFormer)	0.45/ 0.75	0.14/0.22	0.25/0.45	0.18/ 0.30	0.14/ 0.24	0.23/ 0.39



Benchmarks: WOMD, nuScenes, Argoverse (Urban Driving)



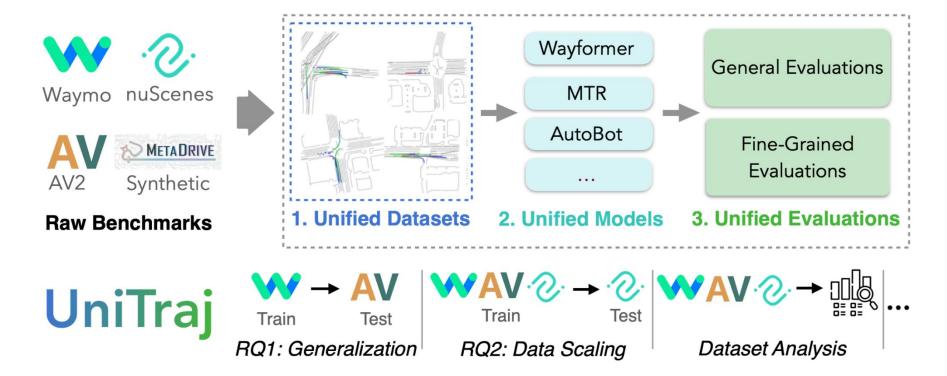
nuScenes prediction task

Leaderboard

Benchmarks: Domain Shift Generalization (Aviation)

How can we design and evaluate models that generalize across a wide variety of contexts?

Benchmarks: UniTraj

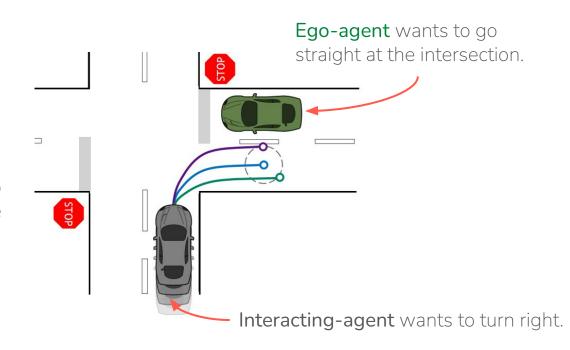


Problems with Task-Agnostic Evaluation

The **blue trajectory** is the ground truth

The **green** and **purple** trajectories are the ego-agent's predictions.

Imagine that both were predicted to be equally likely and yield the same ADE value.

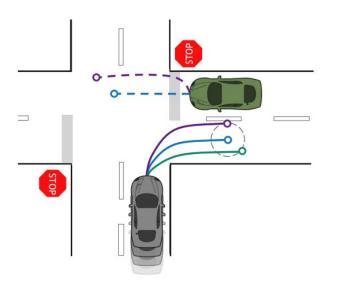


Problems with Task-Agnostic Evaluation

The **blue trajectory** is the ground truth

The green and purple trajectories are the ego-agent's predictions.

Imagine that both were predicted to be equally likely and yield the same ADE value, but the purple one has lower ADE.



The **purple** prediction is used to inform the ego-agent.

The ego realizes it is a potentially dangerous trajectory.

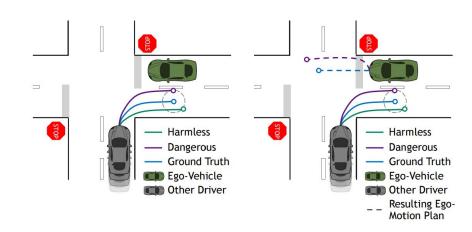
Thus it takes an evasive maneuver, which incurs a higher planning cost than would've otherwise the **ground truth plan**.

Problems with Task-Agnostic Evaluation

Task-agnostic metrics are disconnected from the downstream task and from real-world evaluation and deployment.

Task-Aware Evaluation

- Focus is on evaluating and addressing:
 - Prediction under perception uncertainty [1].
 - o Implications of prediction failures on downstream tasks [2, 3, 4].



^[1] Stoler, B., Jana, M., Hwang, S., & Oh, J. (2023, October). T2FPV: Dataset and method for correcting first-person view errors in pedestrian trajectory prediction. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4037-4044). IEEE.

^[2] Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.

^[3] Farid, A., Veer, S., Ivanovic, B., Leung, K., & Pavone, M. (2023, March). Task-relevant failure detection for trajectory predictors in autonomous vehicles. In Conference on Robot Learning (pp. 1959-1969). PMLR. [4] Nakamura, K., Tian, T., & Bajcsy, A. (2025, January). Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures. In Conference on Robot Learning (pp. 4051-4065). PMLR.

Is Trajectory Forecasting Solved?

The State-of-the-Art

Motion Transformer (MTR), 1st Place Waymo Open Motion Prediction Challenge, 2022.

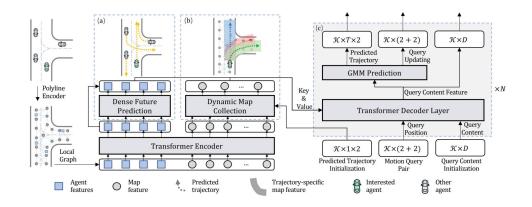
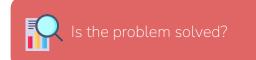
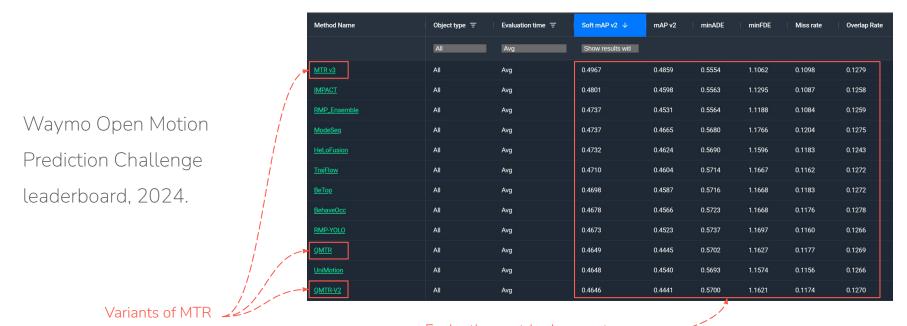


Table 1: Performance comparison of marginal motion prediction on the validation and test set of Waymo Open Motion Dataset. †: The results are shown in *italic* for reference since their performance is achieved with model ensemble techniques. We only evaluate our default setting MTR on the test set by submitting to official test server due to the limitation of submission times of WOMD.

	Method	Reference	minADE ↓	minFDE↓	Miss Rate ↓	mAP ↑
	MotionCNN [26]	CVPRw 2021	0.7400	1.4936	0.2091	0.2136
	ReCoAt [66]	CVPRw 2021	0.7703	1.6668	0.2437	0.2711
Test	DenseTNT [21]	ICCV 2021	1.0387	1.5514	0.1573	0.3281
Test	SceneTransformer [37]	ICLR 2022	0.6117	1.2116	0.1564	0.2788
	MTR (Ours)	-	0.6050	1.2207	0.1351	0.4129
	†MultiPath++ [49]	ICRA 2022	0.5557	1.1577	0.1340	0.4092
	†MTR-Advanced-ens (Ours)	-	0.5640	1.1344	0.1160	0.4492

The State-of-the-Art





Evaluation metrics have not improved significantly since

Benchmark-Reality Gap

The Goal:

The Reality:

Human-involved rear-end accidents

1.9 per million miles traveled vs.

ADS-involved rear-end accidents

9.1 per million miles traveled

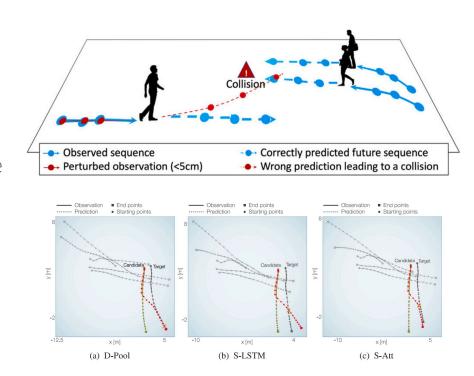
What's behind the generalization gap?

Existing challenges in the field:

Perception-level	Perception errors and perturbations to the input data
Data-level	Non-uniform data coverage
Control-level	How do we use forecasts downstream?

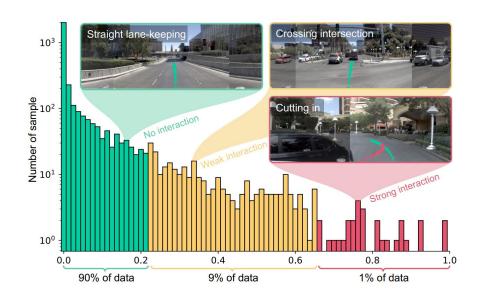
Brittleness to Perception Errors

Carefully-crafted perturbations can cause significant prediction failures that lead to unrealistic and/or unsafe behavior.



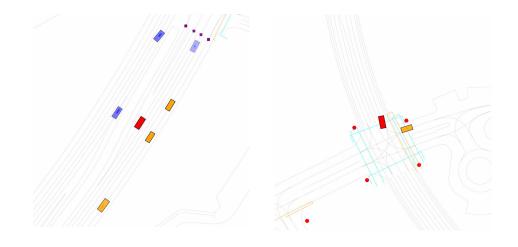
Lack of Meaningful Interactivity

The majority of recorded driving data consists of uneventful driving with limited interactions [1].



Lack of Meaningful Interactivity

The majority of recorded driving data consists of uneventful driving with limited interactions [1].



The Curse of Rarity

Complex and safety-critical scenarios in real-world datasets are rare, which makes leveraging real-world datasets to train and validate robust policies challenging.

Operational Restrictions

Ensuring uniform data coverage is difficult and expensive to attaining, which makes generalizability in unseen environment challenging.

Operational Restrictions:

Geofences

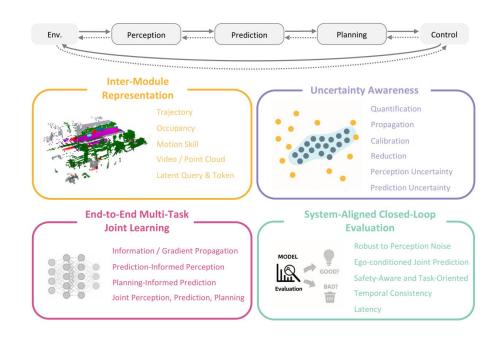
Weather

Time of Day

Road Type

Deployability

How do we deploy trajectory forecasting models and guarantee generalizability and robustness?



Trajectory Forecasting in my PhD

Some of Our Recent Works

Relevance to Trajectory Forecasting

SafeShift =

Safety-informed Distribution Shifts for Robust Trajectory Prediction in Autonomous Driving IEEE Intelligent Vehicles Symposium, 2024

Scenario Mining; Robustness Renchmark

Skills-Enabled Adversary Learning for Closed-Loop Scenario Generation IEEE Robotics and Automation Letters. 2025

Closed-Loop Evaluation; Robustness Renchmark

A Large Model and Dat Movement Forecasting

A Large Model and Dataset for Airport Surface AIAA Aviation and Ascend Forum, 2024

New Domain and Dataset: Domain Shift Benchmark

Social Robot Tree Search for Long-Horizon Navigation in Shared Airspace IEEE Robotics and Automation Letters. 2024

New Domain: Model Deployability

Safety-informed Distribution Shift for Robust Trajectory Prediction in Autonomous Driving IEEE Intelligent Vehicles Symposium, 2024

https://navars.xyz/safeshift

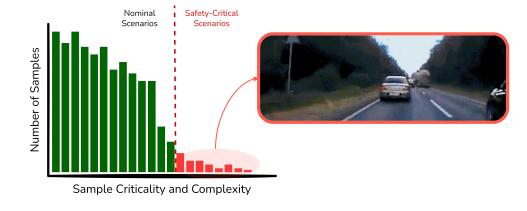
In the context of Trajectory Forecasting:

- A scenario characterization paradigm for trajectory datasets
- An out-of-distribution robustness benchmark
- Bonus: applied in industry!

Assessing the Generalizability of Autonomous Vehicles (AV)

The "Curse of Rarity":

- Safety-critical scenarios in real-world datasets are rare.
- Directly leveraging real-world datasets to train and validate robust policies is challenging.



Assessing the Generalizability of AVs

Existing methodologies:

On-road testing [7]

- + Realistic
- Potentially dangerous

Scenario Generation [6]

- + Not dangerous
- Potentially unrealistic

Assessing the Generalizability of AVs – An Alternative

Broadening the concept of safety:

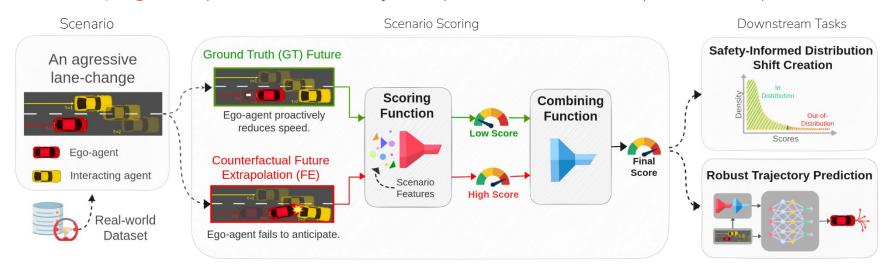
Acting proactively to avoid safety criticality, e.g., swerving, braking.

Acting near safety-critically, e.g., recklessly or distractedly.

Source: https://www.pbh2.com/wtf/close-call-qifs/5/

SafeShift

A scenario characterization framework through counterfactual probing for identifying and studying safety-relevance in trajectory datasets via safety-informed priors.

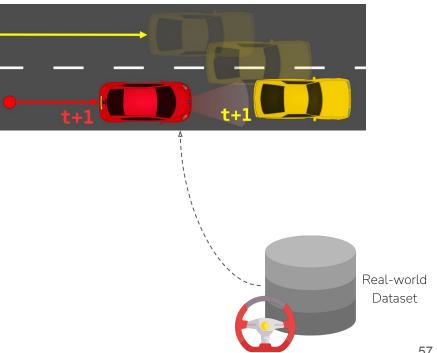


A Toy Example

Scenario: The yellow vehicle performs an aggressive lane change in front of the red vehicle.

Real Outcome: The proactive red vehicle anticipates and slows down to allow the lane change.

→How could've this scenario gone wrong?



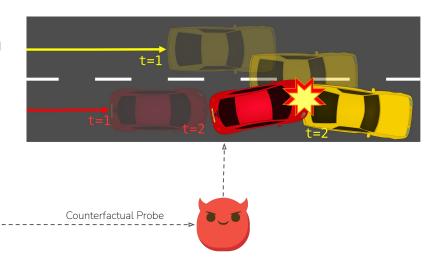
A Toy Example

Scenario: The yellow vehicle performs an aggressive lane change in front of the red vehicle.

Real Outcome: The proactive red vehicle anticipates and slows down to allow the lane change.

→ What if... the red vehicle is distracted,

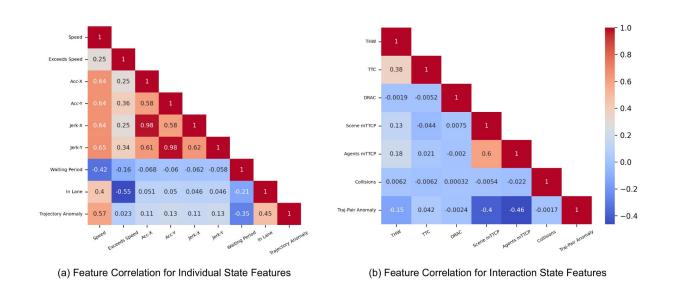
doesn't anticipate the lane change?



The score of the counterfactual probe incurred a high cost, thus, the scenario is safety-relevant.

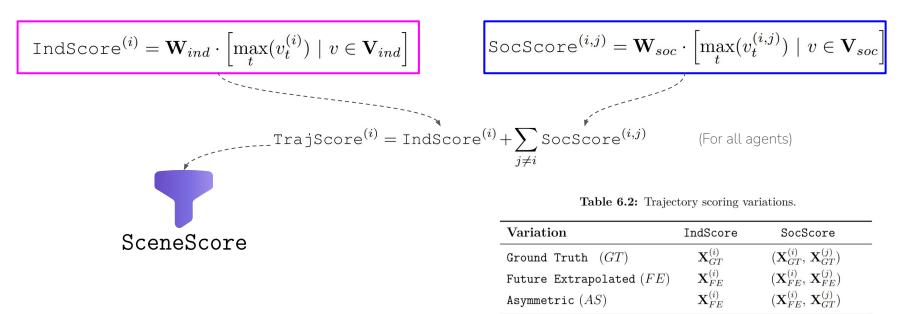
Scenario Features

Correlation matrices for individual and interaction features.



Scenario Scores

The score combines per-agent individual and social features:



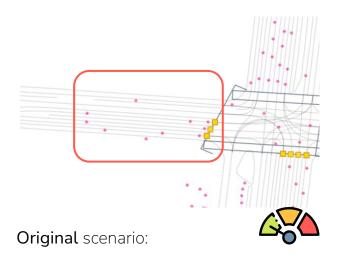
Combined (CO)

Asymmetric Combined (AC)

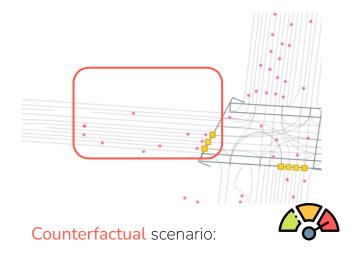
max(TrajScore_{cr}, TrajScore_{re})

max(TrajScore_{ct}, TrajScore_{4s})

A Real Example



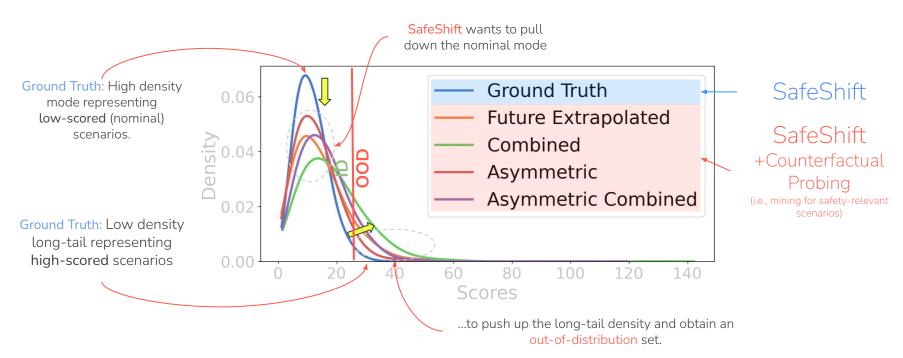
Black vehicle sees the standing vehicle ahead and slows down to avoid collision.



Distracted black vehicle does not see the standing vehicle, keeps going until it collides.

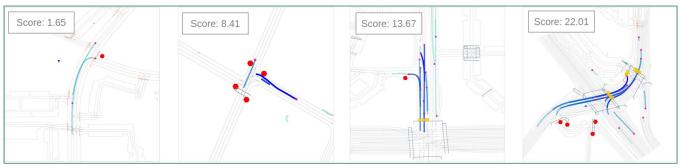
Expanding the Long-tail

Density function across scores for different scoring strategies.

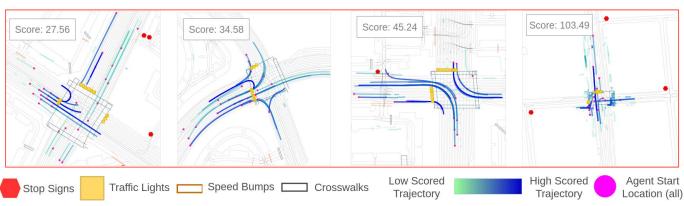


In-Distribution vs Out-of-Distribution Results

In-Distribution Scenes

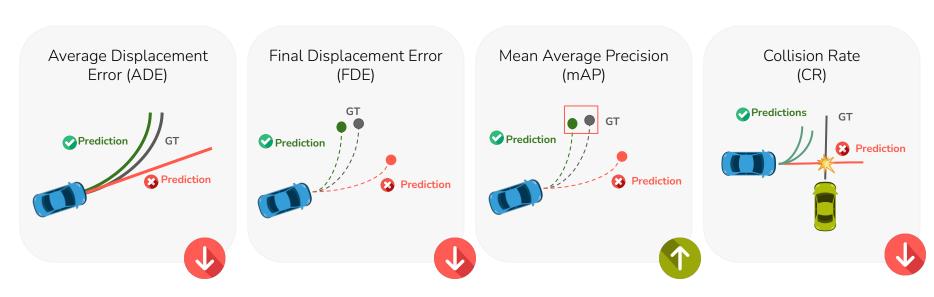


Out-of-Distribution Scenes



Metrics

We analyze widely accepted trajectory prediction metrics in autonomous driving:



In-Distribution vs Out-of-Distribution Results

Want to observe an increased GT crash rate in the test set (ODD) w.r.t. GT val set (ID)

TABLE II: Distribution shift experiments in WOMD [5]. ADE / FDE is in meters. Δ_{val} is the change in test collision rate (CR) from the corresponding val CR. A more drastic **increase** is better.

Data Split	Method	Validation Se ADE / FDE	et (In-Dis mAP	stribution) CR	Testing Se ADE / FDE	et (Out-o mAP	of-Distribution) CR (Δ_{val})	scenarios
Uniform	GT MTR [27] A-VRNN [24]	- / - 0.73 / 1.58 1.80 / 4.63	0.30 0.06	0.008 0.062 0.057	- / - 0.73 / 1.59 1.82 / 4.67	0.31 0.06	0.009 (+12.5%) 0.061 (-1.60%) 0.058 (+1.80%)	~315 scenarios
Clusters [18]	GT MTR A-VRNN	- / - 0.69 / 1.50 1.79 / 4.59	0.35 0.08	0.009 0.060 0.062	- / - 0.71 / 1.55 1.82 / 4.70	0.33 0.07	0.007 (-22.2%) 0.051 (-15.0%) 0.049 (-21.0%)	~245 scenarios
Scoring (Ours)	GT MTR A-VRNN	- / - 0.72 / 1.59 1.99 / 5.26	0.32 0.05	0.005 0.044 0.042	- / - 0.74 / 1.59 2.13 / 5.55	0.30 0.05	0.017 (+240%) 0.100 (+127%) 0.099 (+136%)	~595 scenarios

GT: Ground truth tracks

Unremediated Trajectory Prediction

Want to observe models

How can we **remediate** these models to mitigate the collision rates incurred and improve model **generalizability** under OOD conditions?

onding val set (ID)

TABLE II: Distribution shift experiments in WOMD [5]. ADE / FDE is in meters. Δ_{val} is the change in test collision rate (CR) from the corresponding val CR. A more drastic **increase** is better.

Data Split	Method	Validation Se ADE / FDE					of-Distribution) CR (Δ_{val})	
Uniform	GT MTR [27] A-VRNN [24]	- / - 0.73 / 1.58 1.80 / 4.63	0.30 0.06	0.008 0.062 0.057	- / - 0.73 / 1.59 1.82 / 4.67	0.31 0.06	0.009 (+12.5%) 0.061 (-1.60%) 0.058 (+1.80%)	~2082 scenarios
Clusters [18]	GT MTR A-VRNN	- / - 0.69 / 1.50 1.79 / 4.59	0.35 0.08	0.009 0.060 0.062	- / - 0.71 / 1.55 1.82 / 4.70	0.33 0.07	0.007 (-22.2%) 0.051 (-15.0%) 0.049 (-21.0%)	~1750 scenarios
Scoring (Ours)	GT MTR A-VRNN	- / - 0.72 / 1.59 1.99 / 5.26	0.32 0.05	0.005 0.044 0.042	- / - 0.74 / 1.59 2.13 / 5.55	0.30 0.05	0.017 (+240%) 0.100 (+127%) 0.099 (+136%)	~3482 scenarios

GT: Ground truth tracks

Generalizable Trajectory Prediction under Out-of-Distribution Conditions

Difficulty-based sample weighting

To encourage the model to not treat all scenarios equally and care about safety-relevant situations.

$$\mathtt{WeightedLoss}^{(i)} = rac{1}{N} \sum_{i}^{N} \mathtt{Loss}^{(i)} \cdot \mathtt{Score}_{AC}^{(i)}$$

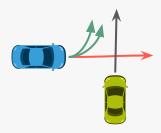
Counterfactual Biasing

To add counterfactual understanding to the model using the extrapolated futures.



Collision Loss

To add collision-awareness by favour predictions that do not collide with other agents' GT trajectories.



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

Want to mitigate the models' crash rates in the test set (ODD) w.r.t. the corresponding val set (ID)

TABLE III: Robust trajectory prediction experiments in WOMD [5]. ADE / FDE is in meters. Δ_{test} is the change in test CR from the *un-remediated* test CR for each method. A more drastic **decrease** is better.

Data Split	Method	Validation Set (In-Distribution) ADE / FDE mAP CR			Testing Set (Out-of-Distribution) ADE / FDE mAP CR (Δ_{test})			
	GT	-/-	-	0.005	- / -	-	0.017 (-)	
Scoring (Ours)	MTR MTR + F+ [18] MTR + Ours	0.72 / 1.59 0.73 / 1.59 0.83 / 1.80	0.32 0.32 0.25	0.044 0.043 0.037	0.74 / 1.59 0.75 / 1.59 0.89 / 1.91	0.30 0.30 0.22	0.100 (-) 0.099 (-1.00%) 0.086 (- 14.0 %)	~3482 scenarios
	A-VRNN A-VRNN + F+ A-VRNN + Ours	1.99 / 5.26 2.05 / 5.24 1.76 / 4.61	0.05 0.06 0.06	0.042 0.041 0.039	2.13 / 5.55 2.23 / 5.73 1.91 / 4.94	0.05 0.06 0.06	0.099 (-) 0.103 (+4.04%) 0.093 (- 6.06 %)	~3130 scenarios

GT: Ground truth tracks, F+: Frenet+ Strategy [18]

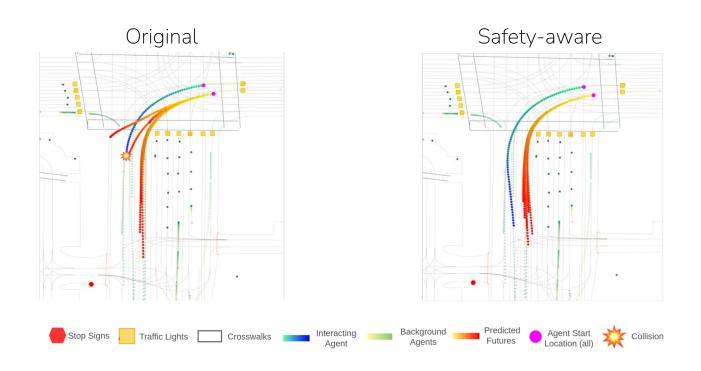
Generalizable Trajectory Prediction under Out-of-Distribution Conditions - Ablations

Table 6.6: Remediation strategy ablation study based on our proposed approach in Section 6.3.6 utilizing MTR [65] on WOMD [57]. ADE / FDE is in meters. Δ_{test} is the change in test CR from the *un-remediated* MTR test CR.

Ablation Name	Remediation			/	Testing Set (Out-of-Distribution)			
	SC	CL	ADE / FDE	mAP	CR	ADE / FDE	mAP	$\operatorname{CR}\left(\Delta_{test}\right)$
MTR [65]	-	-	0.72 / 1.59	0.32	0.044	0.74 / 1.59	0.30	0.100 (-)
MTR + Ours (SC only)	√	-	0.74 / 1.63	0.31	0.046	0.74 / 1.61	0.29	0.103 (+3.00%)
MTR + Ours (CL only)	-	\checkmark	0.81 / 1.77	0.27	0.038	0.88 / 1.92	0.23	0.093 (-7.00%)
MTR + Ours (Full)	✓	\checkmark	0.83 / 1.80	0.25	0.037	0.89 / 1.91	0.22	$0.086 \; (-14.0\%)$

SC: Score incorporation, CL: Collision loss objective.

Generalizable Trajectory Prediction under Out-of-Distribution Conditions



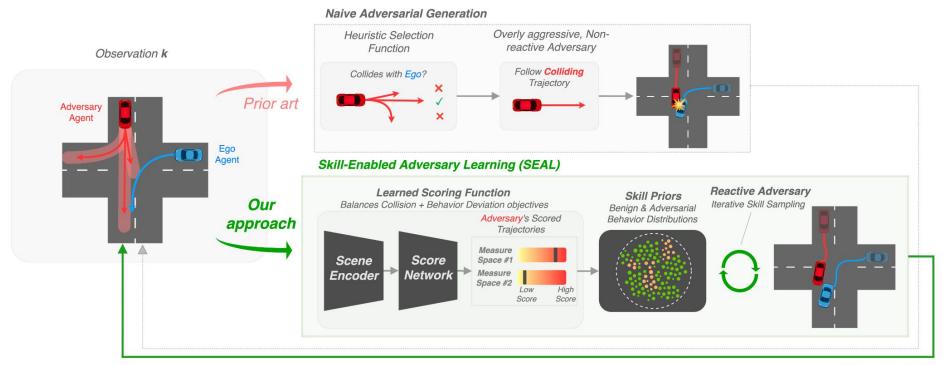
Towards Safe Autonomous Driving via **S**kills-**E**nabled **A**dversary **L**earning for Closed-Loop Scenario Generation

https://navars.xyz/seal

In the context of Trajectory Forecasting:

- Predictors used as a prior for candidate trajectory selection.
- SafeShift scenarios used as an evaluation fairness benchmark.
- Bonus: applied in industry!

Skill-Enabled Adversary Learning for Scenario Generation

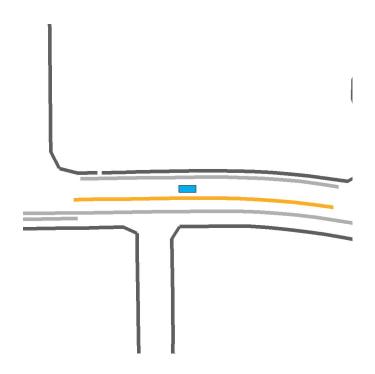


Observation k+1

Scenario Realism

SOTA adversarial scenario-generation approaches often struggle to provide useful training stimuli to closed-loop agents:

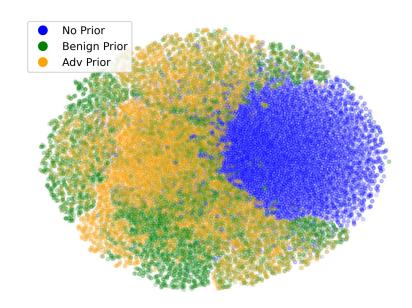
- Limited view of safety-criticality, often only focused on optimizing unrealistic and overly-aggressive adversarial behavior
- Lacking reactivity to an ego-agent's behavior diversity.



Idea: Skill-Enabled Adversary Learning (SEAL)

SEAL introduces two novel components:

- A learned objective function to anticipate how a reactive ego agent will respond to a candidate adversarial behavior.
- A reactive adversary policy that hierarchically selects human-like skill primitives to increase criticality and maintain realism.



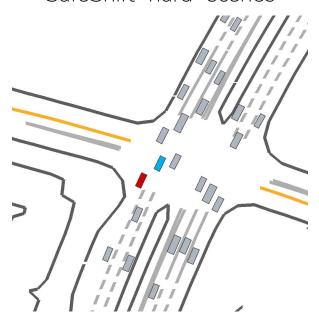
SEAL: Evaluation Fairness

Safety-critical scenario generation approaches commonly evaluate safety-criticality *in-distribution*.

SEAL argues that performance on challenging scenes is ultimately more important.

Therefore, it leverages SafeShift to create a realistic out-of-distribution evaluation setting for scenario generation.

Scenario Generation using SafeShift "hard" scenes



Amelia

A Large Model and Dataset for Airport Surface Movement Forecasting

AIAA Aviation and Ascend Forum, 2024

https://ameliacmu.github.io

In the context of Trajectory Forecasting:

- A new domain for trajectory forecasting
- A generalizability benchmark
- SafeShift characterization used as a prior for generalizable scene representation
- Bonus: Best Paper Award!

Uptick in close calls at U.S. airports

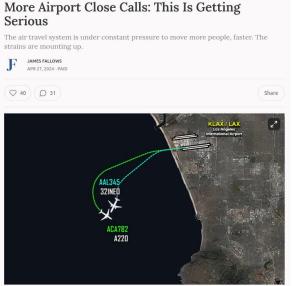
Airline Close Calls Happen Far More Often Than Previously Known

By <u>Sydney Ember</u> and <u>Emily Steel</u>
Graphics by Leanne Abraham, <u>Eleanor Lutz</u> and <u>Ella Koeze</u>
Aug. 21, 2023

What's Behind the Uptick in Close Calls at U.S. Airports?

An increase in near collisions at U.S. airports should be a "wake-up call," say government officials and aviation experts. What's causing the issue? And what's being done about it?

December 18, 2023



LOC

FAA, NTSB investigating several serious close calls amid record-breaking air travel

A runway collision at Haneda Airport, Japan

January 2nd, 2024

Japan Airlines counts losses from wrecked Tokyo plane

By Daniel Leussink, Kaori Kaneko and Lisa Barrington January 4, 2024 1:12 PM GMT+5:30 · Updated 2 hours ago

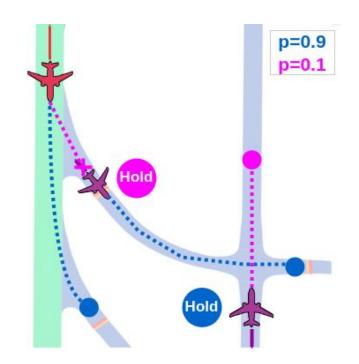
Planes collide at Tokyo airport Japan Airlines flight 516 collided with a Coast Guard aircraft while landing at Haneda Airport in Japan's capital Tokyo on Jan. 2. Fliaht 516 JAPAN wreckage Airport Crash on Runway 34R Japan Airlines flight 516 from Sapporo Tokyo's Haneda airport 500 m Sources: FlightRadar24; Maps4News

Vijdan Mohammad Kawoosa • Jan. 2, 2024 | REUTERS

A Framework for Airport Surface Movement Forecasting

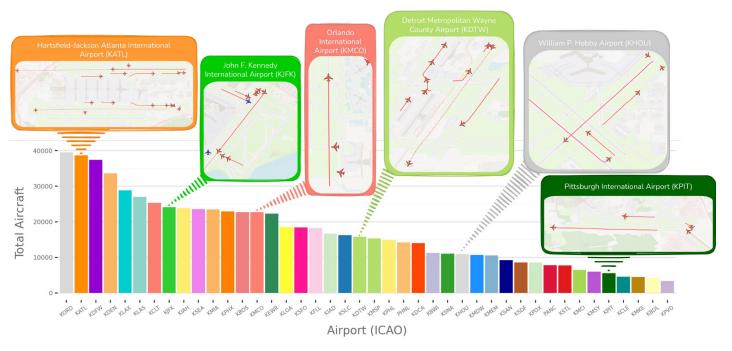
Amelia's objectives:

- Enable data-driven solutions for improving the safety and efficiency of airport operations.
- Enable scale and diversity for ML research in aviation.



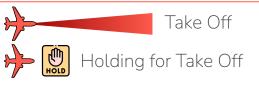
Amelia-42: Enabling Dataset Diversity and Scale

We collect and process a large dataset for airport surface movement covering 42 diverse U.S. airports.



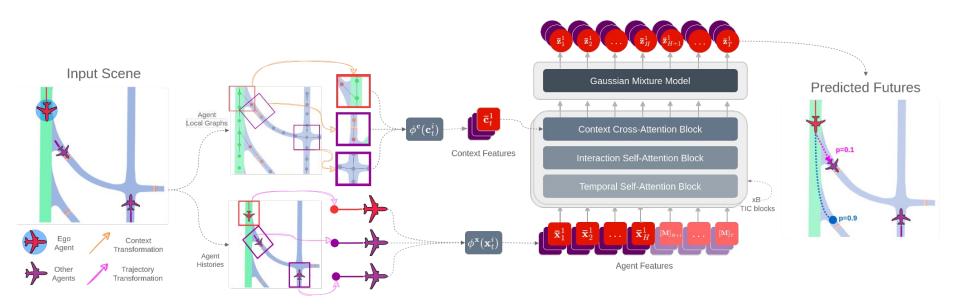
Amelia-10: Enabling Generalizable Behavior Forecasting

How can we design and evaluate models that generalize across a wide variety of contexts?

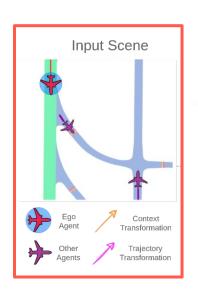


Amelia-TF: Trajectory Forecasting Model

A safety-informed airport surface movement trajectory forecasting baseline.



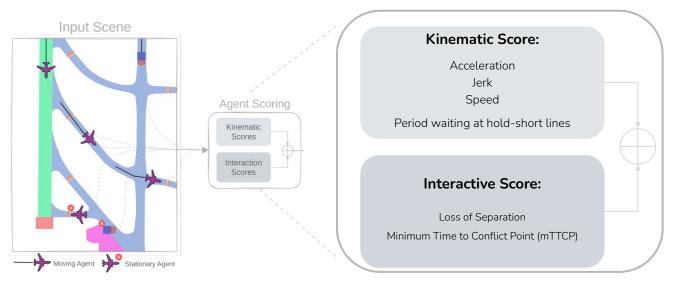
Amelia-TF: Safety-informed Scene Representation



- Want to generalize across a wide variety of contexts
 - Idea: Leverage safety-priors to encode the scene:
 - Characterize the degree to which an agent might affect others in the environment→ Safety-relevance.

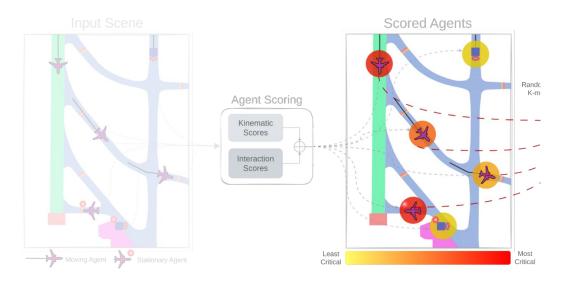
Safety-informed Scene Representation – An Example

To do so, we use an automated scenario characterization scheme to compute each agents kinematic and interactive states.



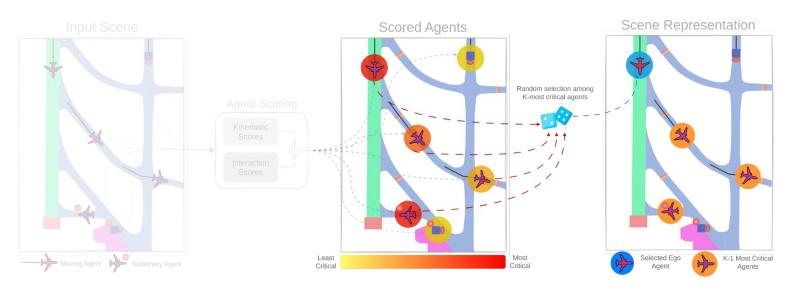
Safety-informed Scene Representation – An Example

We combine these features into a safety score for each agent, representing how relevant it is.



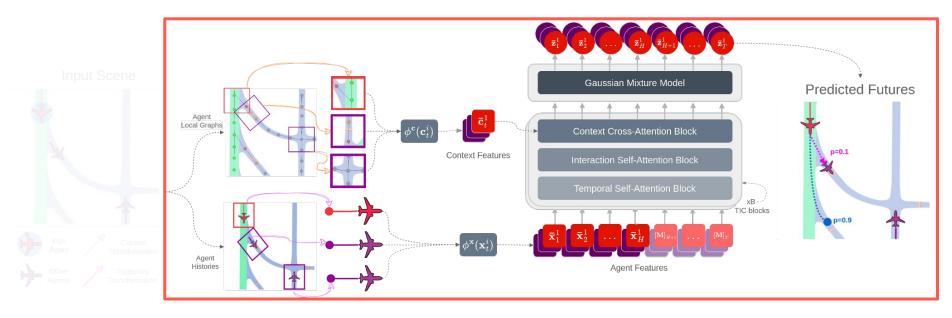
Safety-informed Scene Representation – An Example

We select the K-most relevant agents to represent the scene and an ego-agent within them



Amelia-TF: Scene Encoder and Trajectory Decoder

Local Transformation + Transformer Encoder + GMM Decoder



Ngiam, Jiquan, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs et al. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021).

Varadarajan, Balakrishnan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Nigamaa Nayakanti, Andre Cornman, Kan Chen et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction, 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.

Baseline Trajectory Forecasting Results

Single-Airport; Specialist Models

Table 6 We show results for the *multi-airport* experiment for a prediction horizon of F = 20.

	Experiment	KMDW mADE/mFDE	KEWR mADE / mFDE	KBOS mADE / mFDE	KSF0 mADE / mFDE	KSEA mADE / mFDE	KDCA mADE / mFDE	PANC mADE / mFDE	KLAX mADE / mFDE	KJFK mADE / mFDE	KMSY mADE/mFDE	Average mADE / mFDE
-	Single-Airport	3.30 / 6.12	6.61 / 12.92	5.58 / 10.90	5.06 / 9.82	9.76 / 18.35	4.74 / 9.22	10.11 / 20.87	11.36 / 20.63	4.58 / 9.52	2.73 / 5.12	6.38 / 12.35
	1-Seen	3.30 / 6.12	13.76 / 30.91	11.30 / 25.58	9.68 / 21.73	14.07 / 31.44	7.80 / 16.07	15.00 / 33.75	15.49 / 33.13	7.40 / 16.77	7.43 / 17.11	10.52 / 23.26
	2-Seen	3.31 / 6.23	6.92 / 13.45	8.17 / 17.63	7.49 / 17.18	10.57 / 22.86	6.04 / 12.47	10.61 / 23.00	12.78 / 26.34	5.21 / 11.15	4.49 / 9.64	7.56 / 15.99
	3-Seen	3.26 / 6.59	7.25 / 14.20	6.05 / 12.11	7.25 / 15.50	9.90 / 20.95	6.16 / 12.74	9.53 / 20.26	10.99 / 21.86	4.96 / 10.54	4.33 / 9.29	6.97 / 14.40
	4-Seen	3.52 / 6.74	7.26 / 14.33	6.31 / 12.68	5.66 / 11.33	9.79 / 20.42	5.99 / 12.28	9.22 / 19.14	10.70 / 21.16	4.80 / 10.27	4.18 / 9.05	6.74 / 13.74
	7-Seen	3.59 / 7.03	7.30 / 14.54	6.59 / 13.59	5.73 / 11.65	8.30 / 16.71	4.55 / 8.82	7.48 / 14.94	9.99 / 19.35	4.66 / 9.96	4.64 / 9.85	6.28 / 12.64
	All-Seen	3.88 / 7.70	7.87 / 15.80	6.87 / 14.34	6.09 / 12.64	9.03 / 18.35	4.84 / 9.55	8.24 / 16.75	8.80 / 16.73	4.56 / 9.64	3.22 / 6.25	6.34 / 12.77

Multi-Airport; Generalist Each airport's ADE/FDE; white cell → seen, gray cell → unseen Average ADE/FDE across airports

Social **R**obot **T**ree **S**earch for Long-Horizon Navigation in Shared Airspace

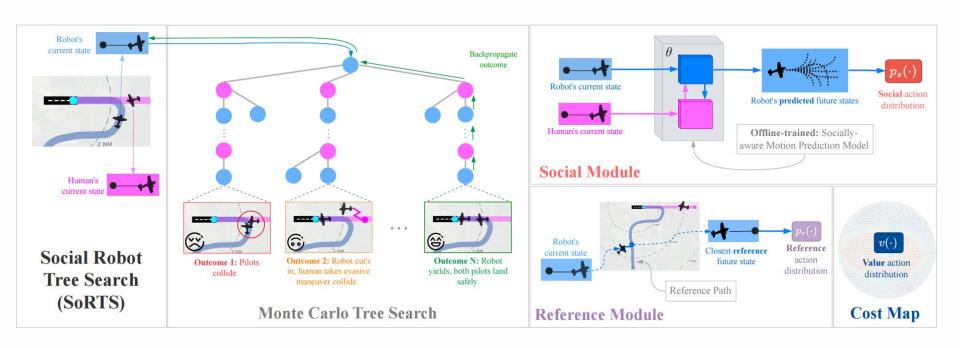
IEEE Robotics and Automation Letters, 2024

https://navars.xyz/sorts

In the context of Trajectory Forecasting:

• Deployment of pre-trained models

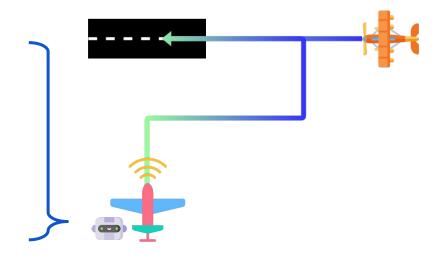
Social Robot Tree Search (SoRTS)



Social Robot Navigation in Shared Airspace

Desired Capabilities:

- Follow navigation norms
- Reason over human behavior and social cues
- Reason over multiple outcomes in the long-term future.



Follow Navigation Norms

Solely focusing on following navigation guidelines may overlook social interactions.

We design a reference module to provide agents with a navigation guideline to follow (e.g., a flying pattern) given a start location. cost map to bias the agent toward more desirable areas.

Robot's current state closest reference future state closest reference action distribution Reference Path

Reference Module

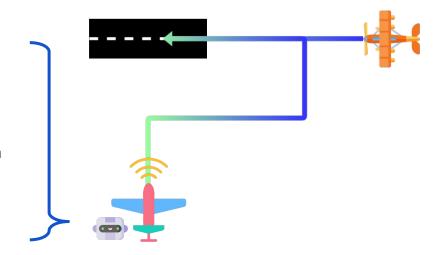
Cost Map

We also provide an agent with a

Social Robot Navigation in Shared Airspace

Desired Capabilities:

- Follow navigation norms
- Reason over human behavior and social cues
- Reason over multiple outcomes in the long-term future.

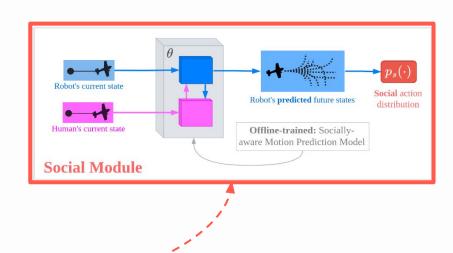


Reasoning over Social Cues

How to balance the **reference** vs. **social** action distributions?

We design a social module to handle short-horizon social dynamics.

To do so, it leverages a socially-aware trajectory prediction model [21], trained offline on the *TrajAir* [20] dataset.



An Initial Planner

Selects *optimal* next action by simply weighing the **reference** and the **social** action distributions for the **current step**,

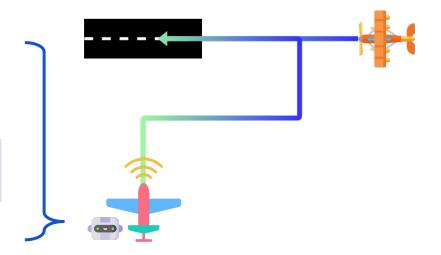
$$\mathbf{a}^* = \arg\max_{\mathbf{a} \in \mathcal{A}} \left[\lambda \cdot p_r(\mathbf{s}_t, \mathbf{a}) + (1 - \lambda) \cdot p_s(\mathbf{s}_t, \mathbf{a}) \right]$$

However, short-sighted reasoning might lead to suboptimal results

Social Robot Navigation in Shared Airspace

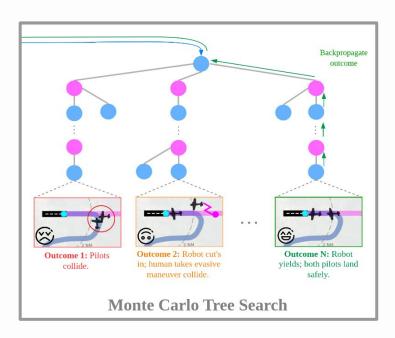
Desired Capabilities:

- Follow navigation norms
- Reason over human behavior and social cues
- Reason over multiple outcomes in the long-term future.



A Long-horizon Planner

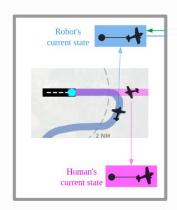
We leverage Monte Carlo Tree Search (MCTS) to reason over multiple long-term outcomes.



Uses a tree policy that's biased by reference and the social modules.

*Upper Confidence Bound [17]

A Toy Example



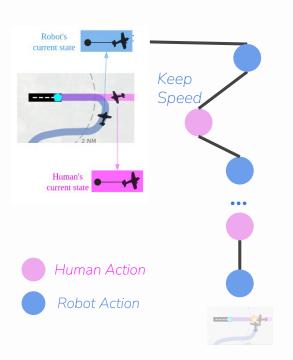
Social Robot
Tree Search
(SoRTS)

A robot and a human pilot want to land on the same runway, and have to coordinate to do so.

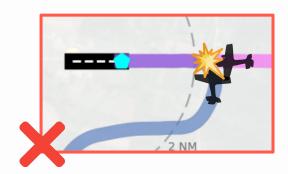
The **robot** has multiple decision modalities to choose from in order to complete the task (e.g, slow-down, speed-up, etc).

The robot has a reference to follow.

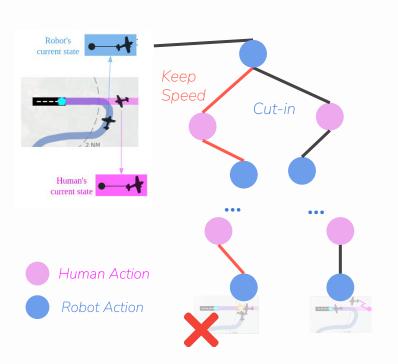
The robot is able to characterize social interactions.



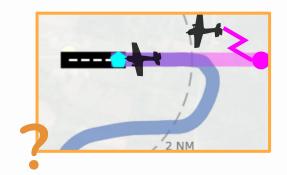
The robot keeps speed and prioritizes the reference.



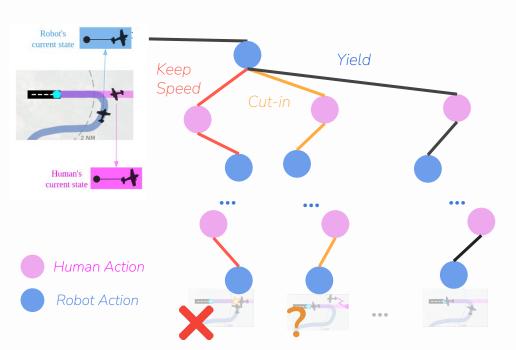
Outcome 1: Collision!



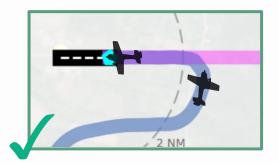
The robot aggressively cuts-in.



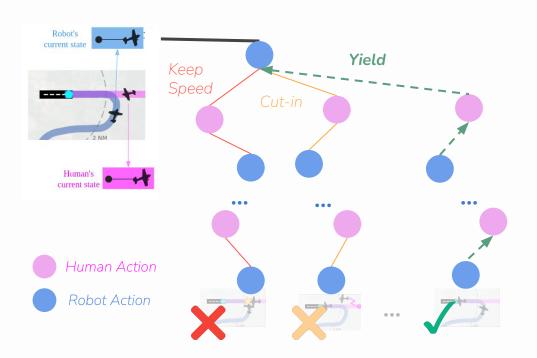
Outcome 2: Human takes an evasive maneuver to avoid a collision.



The robot yields to the human.



Outcome N: Both the human and the robot land safely.



Backpropagate Best Outcome

Recommended Papers: Fundamentals, Datasets, Models

Surveys and Fundamentals:

- Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.
- Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O. (2020). Human motion trajectory prediction: A survey. The International Journal of Robotics Research, 39(8), 895-935.

Models:

- Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., & Savarese, S. (2016). Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 961-971).
- Yuan, Y., Weng, X., Ou, Y., & Kitani, K. M. (2021). Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9813-9823).
- Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H. T. L., Ling, J., ... & Shlens, J. (2021). Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417.
- Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., & Schmid, C. (2020). Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11525-1153).
- Shi, S., Jiang, L., Dai, D., & Schiele, B. (2022). Motion transformer with global intention localization and local movement refinement. Advances in Neural Information Processing Systems, 35, 6531-6543.
- Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K. S., & Sapp, B. (2022). Wayformer: Motion forecasting via simple & efficient attention networks. arXiv preprint arXiv:2207.05844.
- Feng, L., Bahari, M., Amor, K. M. B., Zablocki, É., Cord, M., & Alahi, A. (2024, September). *Unitraj: A unified framework for scalable vehicle trajectory prediction*. In European Conference on Computer Vision (pp. 106-123). Cham: Springer Nature Switzerland.

Datasets:

- Chang, M. F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., ... & Hays, J. (2019). Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8748–8757).
- Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., ... & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9710-9719).
- Navarro, I., Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 (p. 4251).

Evaluation:

- Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.
- Li, L., Lin, X., Huang, Y., Zhang, Z., & Hu, J. F. (2024). Beyond minimum-of-N:

 Rethinking the evaluation and methods of pedestrian trajectory prediction. IEEE

 Transactions on Circuits and Systems for Video Technology.
- Weng, E., Hoshino, H., Ramanan, D., & Kitani, K. (2023). Joint metrics matter: A better standard for trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 20315-20326).

Recommended Papers: Related / Frontier Topics

Scenario Generation, Re-simulation and Closed-loop Evaluation

- Suo, S., Wong, K., Xu, J., Tu, J., Cui, A., Casas, S., & Urtasun, R. (2023). Mixsim: A hierarchical framework for mixed reality traffic simulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9622-9631).
- Stoler, B., Navarro, I., Francis, J., & Oh, J. (2025). SEAL: Towards safe autonomous driving via skill-enabled adversary learning for closed-loop scenario generation. IEEE Robotics and Automation Letters, (99), 1-8.

Domain Adaptation

- Navarro, I., Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 (p. 4251).
- Diehl, C., Karkus, P., Veer, S., Pavone, M., & Bertram, T. (2025, May). Lord: Adapting differentiable driving policies to distribution shifts. In 2025 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7036-7043). IEEE.
- Messaoud, K., Cord, M., & Alahi, A. (2025). Towards Generalizable Trajectory Prediction using Dual-Level Representation Learning and Adaptive Prompting. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 27564-27574).

Trajectory Selection and Deployment

Navarro, I., Patrikar, J., Dantas, J. P., Baijal, R., Higgins, I., Scherer, S., & Oh, J. (2024). SoRTS: Learned tree search for long horizon social robot navigation. IEEE Robotics and Automation Letters, 9(4), 3759-3766.

Scenario Mining

- Stoler*, B., Navarro*, I., Jana, M., Hwang, S., Francis, J., & Oh, J. (2024, June). Safeshift: Safety-informed distribution shifts for robust trajectory prediction in autonomous driving. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 1179-1186). IEEE.
- Ding, W., Veer, S., Leung, K., Cao, Y., & Pavone, M. (2025). Surprise potential as a measure of interactivity in driving scenarios, arXiv preprint arXiv:2502.05677.
- Yang, Y., Zhang, Q., Ikemura, K., Batool, N., & Folkesson, J. (2024, June). Hard cases detection in motion prediction by vision-language foundation models. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 2405-2412). IEEE.

Task Failure Detection and Remediation

- Farid, A., Veer, S., Ivanovic, B., Leung, K., & Pavone, M. (2023, March). Task-relevant failure detection for trajectory predictors in autonomous vehicles. In Conference on Robot Learning (pp. 1959-1969). PMI R
- Nakamura, K., Tian, T., & Bajcsy, A. (2025, January). Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures. In Conference on Robot Learning (pp. 4051-4065). PMLR.
- Saadatnejad, S., Bahari, M., Khorsandi, P., Saneian, M., Moosavi-Dezfooli, S. M., & Alahi, A. (2022). Are socially-aware trajectory prediction models really socially-aware? Transportation research part C: emerging technologies, 141, 103705.
- Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine, S., & Gal, Y. (2020, November). Can autonomous vehicles identify, recover from, and adapt to distribution shifts?. In International Conference on Machine Learning (op. 3145–3153). PMLR.

Autonomous Driving Paradigms

Fu, H., Zhang, D., Zhao, Z., Cui, J., Liang, D., Zhang, C., ... & Bai, X. (2025). Orion: A holistic end-to-end autonomous driving framework by vision-language instructed action generation. arXiv preprint arXiv:2503.19755

Thank you!

