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● What is Trajectory Forecasting?

● Is Trajectory Forecasting Solved?

● Trajectory Forecasting in my PhD
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What is Trajectory Forecasting?
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Trajectory forecasting because helps us understand how humans interact in shared spaces, 
anticipate their future actions, and use that knowledge to guide safe and effective 
decision-making and decision-support systems.

Why do we care about trajectory forecasting in robotics?

Source: KXAN Source: giphy.com Source: Amelia
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Trajectory Forecasting
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Goal: predict the future states for an agent or set of agents given a history of 
states and context surrounding an agent, 

How do we define these 
states? What length of 
history is enough?

What context information 
is useful for predicting an 
agent’s future?

How do we represent the 
predictions? How far into 
the future should we 
predict?

How do we design 
a model of human 
behavior?



Key Ingredients

Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O. (2020). Human motion trajectory prediction: A survey. The International Journal of Robotics Research, 39(8), 895-935.
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Dataset and Inputs Representation



Common domains and use cases

Use cases: service robots, 
surveillance, sport analysis.

Human Motion Driving Aviation

Use cases: personal self-driving, 
transportation of goods, traffic 

management.

Use cases: traffic management, 
decision-support systems for task 

load reduction. 
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Human Motion

Subdomain: Sports

Utilizes a motion capture system that tracks 
players, balls, referees.  

SportVU Data [4]

[1] Lerner, A., Chrysanthou, Y., & Lischinski, D. (2007, September). Crowds by example. In Computer graphics forum (Vol. 26, No. 3, pp. 655-664). Oxford, UK: Blackwell Publishing Ltd.
[2] Pellegrini, S., Ess, A., Schindler, K., & Van Gool, L. (2009, September). You'll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international conference on computer vision (pp. 
261-268). IEEE.
[3] Martin-Martin, R., Patel, M., Rezatofighi, H., Shenoi, A., Gwak, J., Frankel, E., ... & Savarese, S. (2021). Jrdb: A dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE 
transactions on pattern analysis and machine intelligence, 45(6), 6748-6765.
[4] SportsVU Data: https://github.com/linouk23/NBA-Player-Movements/tree/master/examples 

JRDB [3]

Subdomain: Service Robots (Social 
Navigation)

Captures human behavior in public spaces 
from a first-person-view.

ETH[1] / UCY[2]

Subdomain: Surveillance

Captures human behavior in public spaces, 
like hotels, universities and stores.
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https://github.com/linouk23/NBA-Player-Movements/tree/master/examples


Urban/Highway Driving 

Subdomain: Autonomous Trucking

Focus on covering truck-specific 
surroundings (e.g., container terminals), 
larger local regions to understand the 
changes between chassis and cabin.

MAN Truck Scenes [3]

[1] LevelXData: https://levelxdata.com 
[2] Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., ... & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In Proceedings of the 
IEEE/CVF international conference on computer vision (pp. 9710-9719).
[3] Fent, F., Kuttenreich, F., Ruch, F., Rizwin, F., Juergens, S., Lechermann, L., ... & Lienkamp, M. (2024). Man truckscenes: A multimodal dataset for autonomous trucking in diverse conditions. Advances in Neural Information 
Processing Systems, 37, 62062-62082.

WOMD [2]

Subdomain: Autonomous Driving

Captures urban/highway interactions 
from first-person view. 

LevelXData (inD, exiD, hiD) [1]

Subdomain: Traffic Management 

Captures urban settings from a top-down 
perspective, typically using RGB data. 
Focus is generally on developing 
intelligent mobility solutions.
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https://levelxdata.com


Aviation

[1] Patrikar, J., Moon, B., Oh, J., & Scherer, S. (2022, May). Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace. In 2022 international conference on robotics and 
automation (icra) (pp. 2525-2531). IEEE.
[2] Navarro, I., Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 (p. 4251).

Amelia [2]

Subdomain: Airport Surface Movement Operations

Captures diverse airport operations in terminal airspace. Airports 
are primarily towered, meaning there is a centralized authority 
coordinating interactions. 

TrajAir [1]

Subdomain: Non-towered Airports 

Captures aircraft interaction in a non-towered airport, i.e., airports 
where there is no centralized coordination via air traffic controllers. 
Interactions are centralized. 
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Input Representations

12
Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Modeling Approaches



Physics-based Models

14

Generally simple and acceptable under 
mild conditions, such as short-horizon 

predictions.

Difficult to effectively design 
hand-crafted models that account for all 
environmental and social complexities. 

Motion is predicted by forward 
simulating a set of dynamics equations 
that follow a physics-inspired model. 

Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Planning-based Models

15

Generally good in structured settings.

Often assume agents are rational and make 
optimal motion decisions. May not generalize 

well under complex and less structured 
settings. 

Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.

Motion is predicted by explicitly reasoning 
about the agent’s long-term motion goals, 
and computing possible paths that attain 

those goals.



Pattern-based Models
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Can capture complex motion patterns 
directly from the data. More suitable for 

longer-horizon settings.

Generalizability to unseen settings is 
challenging.

Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.

Approximate a dynamics function from 
data, discovering statistical behavioral 

patterns.

Main focus of this lecture!



Output Representations



Types of Predictions
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Simple to implement.

Cannot characterize multimodality and 
uncertainty.

Captures prediction uncertainty, and 
mixtures can represent multiple possible 

futures.

Parametric
Model outputs the parameters of a 

probability distribution, or mixture of 
distributions.

Underlying distribution might not 
match the true distribution. Potential 

mixture collapse.

Examples: RNNs Examples: GMMs, C-VAEs Examples: Normalizing Flows

Often more difficult to evaluate and 
computationally expensive.

Flexible at capturing complex 
multimodal behaviors.

Non-Parametric
Model outputs trajectory samples without 

assuming a parametric distribution. 

Single Trajectory
Model predicts a single, deterministic 

trajectory.



Evolution of Pattern-based Approaches
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Pattern-based Approaches Timeline
2015 2017 2019 2021 2023 2025



LSTMs + Social Pooling
2015 2017 2019 2021 2023 2025

Idea: Use recurrent sequence models (LSTMs) to model agent temporal dependencies and 
add a “social pooling” layer to let hidden states of nearby agents influence each other. 

Influence: First type of strategy to replace hand-crafted rules with learned interactions. 
Established a problem formulation that was widely explored by many follow-up works. 

Strengths: Handle variable length histories; relatively simple and intuitive; strong 
performance in short-horizon settings. 

Limitations: Unable to represent multiple futures, relied on hand-designed pooling (e.g., 
k-closest agents). 

Representative Work: Social LSTM (Alahi et. al, CVPR 2016)



LSTMs + Social Pooling + GANs
2015 2017 2019 2021 2023 2025

Idea: Use GANs to produce multiple plausible futures but also train models adversarially 
to produce socially plausible trajectories. 

Influence: Addressed the problem of multi-modality

Strengths: Improved sample realism and diversity. 

Limitations: Difficult to train, evaluation of diversity/quality/realism was hard; no likelihood 
associated to a sample.

Representative Work: Social GAN (Gupta et. al, CVPR 2018)



Structured Stochastic Models
2015 2017 2019 2021 2023 2025

Idea: Represent scenes as spatio-temporal graphs (agents=nodes, interactions=edges), 
use probabilistic models to decode trajectory information (C-VAEs, VRNN, GMMs).  

Influence: Enabled conditioning and principled/structured representations. 

Strengths: Probabilistic methods for representing multimodality and uncertainty, can 
incorporate context. 

Limitations: Constructing graph-based representations still relied on heuristics. Mode 
collapse. 

Representative Work: Trajectron (Ivanovic et. al, ICCV 2019), Multipath (Varadarajan et al, 
ICRA 2021).

Figure is actually Trajectron++ (2021)



Influence: Attention enabled better, longer-range modeling; worked well with large-scale 
datasets; enabled much more design flexibility. 

Strengths: Parallelizable, good at capturing complex dependencies, longer contexts, easily 
compatible with deterministic and probabilistic models. 

Representative Work(s): Agent-Former (Yuan et al, ICCV 2021), Scene-Transformer (Ngiam et al, 
ICLR 2021), Motion-Transformer (Shi et al, NeurIPS 2022), Wayformer (Nayakanti et al, ICRA 2023), 
DAGNet (Monti et al, ICPR 2021) and many others. 

Transformer and Attention-based Models
2015 2017 2019 2021 2023 2025

Idea: Use transformers to jointly model social, temporal and other contextual relationships. 
Other attention-based models (e.g., GATs) were widely explored here.

Limitations: Data hungry, computational expensive for larger scenes and context.



Transformer-based Models
2015 2017 2019 2021 2023 2025



Diffusion-based Models
2015 2017 2019 2021 2023 2025

Idea: Learn joint distributions by gradually denoising samples. 

Influence: Enabled controllability, which propelled other subfields like scenario generation.

Strengths: Strong sample diversity and realism; flexibility / controllability.  

Limitations: Denoising can have a high inference cost. 

Representative Work: Scene-Diffuser (Jiang et al, NeurIPS, 2024).



Trajectory Forecasting + Large Models
2015 2017 2019 2021 2023 2025

Idea: Use LLMs/VLMs to inject high-level reasoning priors into trajectory forecasting 
models.

Influence: Providing predictors with strong commonsense and open-world reasoning. 

Strengths: Strong zero-shot, few-shot reasoning; flexible conditioning.

Limitations: Computationally expensive; prone to hallucinations; often not great at spatial 
reasoning. 

Representative Work:  TBD. See figure on the left for a taxonomy. 

2015 2017 2019 2021 2023



Evaluation Strategies

28

How do we know we have a 
good model?



Kernel Density Estimate 
(KDE)-based NLL

Task-Agnostic Evaluation

29

Metrics that focus on quantifying the similarity between the predicted and ground truth 

motion, but also capture the multi-modality of human behavior. 

Minimum Average 
Displacement Error 

(mADE)

Minimum Final 
Displacement Error (mFDE)

Mean Average Precision
(mAP)

GTPrediction

Prediction

GT

Prediction

Prediction

GT

Prediction

Prediction

Accuracy / Realism CoverageUncertainty

Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Task-Agnostic Evaluation

30

However, single-agent metrics do not 

capture joint performance, which can lead to 

unnatural and inconsistent predicted social 

behavior, e.g.;

● Colliding trajectories

● Diverging trajectories for social groups

[1] Weng, E., Hoshino, H., Ramanan, D., & Kitani, K. (2023). Joint metrics matter: A better standard for trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision 
[2] Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H. T. L., Ling, J., ... & Shlens, J. (2021). Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417.

Sources: top figure [1], bottom figure [2]



Benchmarks: ETH / UCY (Human Crowds) 

31Yuan, Y., Weng, X., Ou, Y., & Kitani, K. M. (2021). Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 
9813-9823).



Benchmarks: WOMD, nuScenes, Argoverse (Urban Driving)

32
waymo.com/open/challenges/2024/motion-prediction/ 
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
https://eval.ai/web/challenges/challenge-page/1719/overview  

http://waymo.com/open/challenges/2024/motion-prediction/
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
https://eval.ai/web/challenges/challenge-page/1719/overview


Benchmarks: Domain Shift Generalization (Aviation)

33

How can we design and evaluate models that generalize across a wide variety of contexts?

Navarro, I., Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 



Benchmarks: UniTraj 

34Feng, L., Bahari, M., Amor, K. M. B., Zablocki, É., Cord, M., & Alahi, A. (2024, September). Unitraj: A unified framework for scalable vehicle trajectory 
prediction. In European Conference on Computer Vision (pp. 106-123). Cham: Springer Nature Switzerland.



Problems with Task-Agnostic Evaluation

35
Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.

How do these predictions 
impact the ego-policy?

Ego-agent wants to go 
straight at the intersection.

Interacting-agent wants to turn right. 

The blue trajectory is the ground 
truth

The green and purple trajectories 
are the ego-agent’s predictions. 

Imagine that both were predicted to 
be equally likely and yield the same 
ADE value. 



Problems with Task-Agnostic Evaluation

36

The blue trajectory is the 
ground truth

The green and purple 
trajectories are the ego-agent’s 
predictions. 

Imagine that both were 
predicted to be equally likely 
and yield the same ADE value, 
but the purple one has lower 
ADE.  

The purple prediction is used to 
inform the ego-agent. 

The ego realizes it is a 
potentially dangerous 
trajectory. 

Thus it takes an evasive 
maneuver, which incurs a 
higher planning cost than 
would’ve otherwise the ground 
truth plan. 



Problems with Task-Agnostic Evaluation

37

Task-agnostic metrics are disconnected from the downstream task and from real-world 

evaluation and deployment.

Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.



Task-Aware Evaluation

● Focus is on evaluating and 
addressing:

○ Prediction under perception 

uncertainty [1].

○ Implications of prediction failures on 

downstream tasks [2, 3, 4].

[1] Stoler, B., Jana, M., Hwang, S., & Oh, J. (2023, October). T2FPV: Dataset and method for correcting first-person view errors in pedestrian trajectory prediction. In 2023 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS) (pp. 4037-4044). IEEE.
[2] Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.
[3] Farid, A., Veer, S., Ivanovic, B., Leung, K., & Pavone, M. (2023, March). Task-relevant failure detection for trajectory predictors in autonomous vehicles. In Conference on Robot Learning (pp. 1959-1969). PMLR.
[4] Nakamura, K., Tian, T., & Bajcsy, A. (2025, January). Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures. In Conference on Robot Learning (pp. 4051-4065). PMLR.

38

How do we design a cost or 
planning-informed metric?



Is Trajectory Forecasting Solved?

39



The State-of-the-Art

40
Shi, S., Jiang, L., Dai, D., & Schiele, B. (2022). Motion transformer with global intention localization and local movement refinement. Advances in Neural Information Processing Systems, 35, 6531-6543.

Motion Transformer (MTR), 1st Place 

Waymo Open Motion Prediction 

Challenge, 2022. 



The State-of-the-Art

41

Waymo Open Motion 

Prediction Challenge 

leaderboard, 2024. 

Is the problem solved?

Variants of MTR
Evaluation metrics have not 
improved significantly since

https://waymo.com/open/challenges/2024/motion-prediction 

https://waymo.com/open/challenges/2024/motion-prediction


Benchmark-Reality Gap

42

Human-involved rear-end accidents 

1.9 per million miles traveled

ADS-involved rear-end accidents 

9.1 per million miles traveled

vs.

The Goal:
The Reality:

Huang, Chunxi, and Xiao Wen. Characteristics of Rear-End Collisions: A Comparison between ADS-Involved Crashes and ADAS-Involved Crashes 2. 

http://www.youtube.com/watch?v=h7PGrAlPELc


What’s behind the generalization gap?

43

Perception errors and perturbations to the input data

Non-uniform data coverage

How do we use forecasts downstream?

Perception-level

Data-level

Control-level

Existing challenges in the field:



Brittleness to Perception Errors

Carefully-crafted perturbations can cause 
significant prediction failures that lead to 
unrealistic and/or unsafe behavior. 

44Saadatnejad, S., Bahari, M., Khorsandi, P., Saneian, M., Moosavi-Dezfooli, S. M., & Alahi, A. (2022). Are socially-aware trajectory prediction models really socially-aware?. Transportation research part C: emerging 
technologies, 141, 103705.



Lack of Meaningful Interactivity 

The majority of recorded driving data 
consists of uneventful driving with 
limited interactions [1]. 

45
[1] Ding, W., Veer, S., Leung, K., Cao, Y., & Pavone, M. (2025). Surprise potential as a measure of interactivity in driving scenarios. arXiv preprint arXiv:2502.05677.



Lack of Meaningful Interactivity 

The majority of recorded driving data 
consists of uneventful driving with 
limited interactions [1]. 

46
[1] Ding, W., Veer, S., Leung, K., Cao, Y., & Pavone, M. (2025). Surprise potential as a measure of interactivity in driving scenarios. arXiv preprint arXiv:2502.05677.



The Curse of Rarity

47

Complex and safety-critical scenarios in real-world datasets are rare, which makes 
leveraging real-world datasets to train and validate robust policies challenging.

[1] Stoler*, B., Navarro*, I., Jana, M., Hwang, S., Francis, J., & Oh, J. (2024, June). Safeshift: Safety-informed distribution shifts for robust trajectory prediction in autonomous driving. In 2024 IEEE Intelligent Vehicles 
Symposium (IV) (pp. 1179-1186). IEEE.
[2] Stoler, B., Navarro, I., Francis, J., & Oh, J. (2025). SEAL: Towards safe autonomous driving via skill-enabled adversary learning for closed-loop scenario generation. IEEE Robotics and Automation Letters, (99), 1-8.



Operational Restrictions

48

Ensuring uniform data coverage is difficult and expensive to attaining, which makes 
generalizability in unseen environment challenging.

Operational Restrictions:

Geofences Weather Time of Day Road Type

Navarro, I., Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 



Deployability

49

How do we deploy trajectory forecasting 
models and guarantee generalizability 
and robustness?

Wang, L., Lavoie, M. A., Papais, S., Nisar, B., Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Trajectory Forecasting in my PhD

50



Some of Our Recent Works

Skills-Enabled Adversary Learning for Closed-Loop 
Scenario Generation
IEEE Robotics and Automation Letters, 2025

A Large Model and Dataset for Airport Surface 
Movement Forecasting
AIAA Aviation and Ascend Forum, 2024

Safety-informed Distribution Shifts for Robust 
Trajectory Prediction in Autonomous Driving
IEEE Intelligent Vehicles Symposium, 2024

Social Robot Tree Search for Long-Horizon 
Navigation in Shared Airspace
IEEE Robotics and Automation Letters, 2024

Scenario Mining; 
Robustness Benchmark

Closed-Loop Evaluation; 
Robustness Benchmark

New Domain and Dataset; 
Domain Shift Benchmark 

Relevance to 
Trajectory Forecasting

New Domain;
Model Deployability



In the context of Trajectory Forecasting:
● A scenario characterization paradigm for trajectory datasets

● An out-of-distribution robustness benchmark 

● Bonus: applied in industry!

52

Safety-informed Distribution Shift for Robust 
Trajectory Prediction in Autonomous Driving
IEEE Intelligent Vehicles Symposium, 2024
https://navars.xyz/safeshift 

https://navars.xyz/safeshift


Assessing the Generalizability of Autonomous Vehicles (AV)

The “Curse of Rarity”:

● Safety-critical scenarios in 

real-world datasets are rare.

● Directly leveraging real-world 

datasets to train and validate 

robust policies is challenging.

53Ding, Wenhao, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, and Ding Zhao. A survey on safety-critical driving scenario generation—a methodological perspective. IEEE Transactions on Intelligent Transportation Systems 
24, no. 7 (2023): 6971-6988.



Existing methodologies:

Assessing the Generalizability of AVs

54

On-road testing [7]

+ Realistic
- Potentially dangerous

+ Not dangerous
- Potentially unrealistic

[6] W. Ding, C. Xu, M. Arief, H. Lin, B. Li, and D. Zhao. A survey on safety-critical driving scenario generation—a methodological perspective. IEEE Transactions on Intelligent Transportation Systems, 2023.
[7] W. Huang, K. Wang, Y. Lv, and F. Zhu. Autonomous vehicles testing methods review in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 163–168.

Scenario Generation [6]



Assessing the Generalizability of AVs – An Alternative

Broadening the concept of safety: 

55

Acting near safety-critically, e.g., 
recklessly or distractedly. 

Acting proactively to avoid safety 
criticality, e.g., swerving, braking. 

Safety-relevance

Source: https://www.pbh2.com/wtf/close-call-gifs/5/ 

https://www.pbh2.com/wtf/close-call-gifs/5/


SafeShift

56

Scenario Scenario Scoring Downstream Tasks

A scenario characterization framework through counterfactual probing for identifying 
and studying safety-relevance in trajectory datasets via safety-informed priors. 



A Toy Example

57

Scenario: The yellow vehicle performs an 
aggressive lane change in front of the red 
vehicle.

Real Outcome: The proactive red vehicle anticipates 
and slows down to allow the lane change.

Real-world 
Dataset

→How could’ve this scenario gone wrong?



Scenario: The yellow vehicle performs an 
aggressive lane change in front of the red 
vehicle.

Real Outcome: The proactive red vehicle anticipates 
and slows down to allow the lane change.

→ What if… the red vehicle is distracted, 

doesn’t anticipate the lane change?

A Toy Example

58

The score of the counterfactual probe 

incurred a high cost, thus, the scenario 

is safety-relevant.

Counterfactual Probe



Scenario Features

59

Correlation matrices for individual and interaction features. 



Scenario Scores

60

The score combines per-agent individual and social features:

(For all agents)



A Real Example

61

Original scenario:

Black vehicle sees the standing 
vehicle ahead and slows down to 
avoid collision. 

Note: Scenario obtained from a subset of the Waymo Open Motion Dataset (WOMD)

Counterfactual scenario:

Distracted black vehicle does not 
see the standing vehicle, keeps 
going until it collides.



Expanding the Long-tail

62

Density function across scores for different scoring strategies. 

Ground Truth: High density 
mode representing 

low-scored (nominal) 
scenarios.

Ground Truth: Low density 
long-tail representing 
high-scored scenarios

SafeShift
+Counterfactual 

Probing
(i.e., mining for safety-relevant 

scenarios)

SafeShift wants to pull 
down the nominal mode

…to push up the long-tail density and obtain an 
out-of-distribution set.

ID O
O

D

SafeShift



In-Distribution vs Out-of-Distribution Results

63



Metrics

64

Average Displacement 
Error (ADE)

Final Displacement Error 
(FDE)

Mean Average Precision
(mAP)

Collision Rate 
(CR)

We analyze widely accepted trajectory prediction metrics in autonomous driving:

GTPrediction

Prediction

GT

Prediction

Prediction

GTPredictions

Prediction

GT

Prediction

Prediction



Want to observe an increased GT crash rate in the test set (ODD) w.r.t. GT val set (ID) 

In-Distribution vs Out-of-Distribution Results

65
Note: experiments done on a subset of ~170k (20%) scenarios from WOMD (~135k for train/val and ~35k for test).  

~315 
scenarios

~595 
scenarios

~245 
scenarios

~280 
scenarios



Want to observe models’ increased crash rate in the test set (ODD) w.r.t. the corresponding val set (ID) 

Unremediated Trajectory Prediction

66
Note: experiments done on a subset of ~170k (20%) scenarios from WOMD. 

~2082 
scenarios

~3482 
scenarios

~1750 
scenarios

How can we remediate these models to mitigate the collision rates 
incurred and improve model generalizability under OOD conditions?



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

67X. Zhou, O. Wu, W. Zhu, and Z. Liang, Understanding difficulty-based sample weighting with a universal difficulty measure  in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 
Springer, 2022, pp. 68–84.

To encourage the model to not treat 
all scenarios equally and care about 
safety-relevant situations. 

Difficulty-based sample 
weighting

Counterfactual Biasing Collision Loss

To add counterfactual 
understanding to the model using 
the extrapolated futures. 

To add collision-awareness by 
favour predictions that do not 
collide with other agents’ GT 
trajectories.  



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

68

~3482 
scenarios

~3130 
scenarios

Want to mitigate the models’ crash rates in the test set (ODD) w.r.t. the corresponding val set (ID) 



Generalizable Trajectory Prediction under Out-of-Distribution Conditions - 
Ablations

69



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

70

Original Safety-aware



In the context of Trajectory Forecasting:
● Predictors used as a prior for candidate trajectory selection.

● SafeShift scenarios used as an evaluation fairness benchmark.

● Bonus: applied in industry!

71

Towards Safe Autonomous Driving via Skills-Enabled 
Adversary Learning for Closed-Loop Scenario Generation
IEEE Robotics and Automation Letters, 2025
https://navars.xyz/seal 

https://navars.xyz/seal


Skill-Enabled Adversary Learning for Scenario Generation

72



Scenario Realism

SOTA adversarial scenario-generation 
approaches often struggle to provide useful 
training stimuli to closed-loop agents:

● Limited view of safety-criticality, often 
only focused on optimizing unrealistic 
and overly-aggressive adversarial 
behavior

● Lacking reactivity to an ego-agent’s 
behavior diversity.
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Idea: Skill-Enabled Adversary Learning (SEAL)

SEAL introduces two novel components:

● A learned objective function to 
anticipate how a reactive ego agent 
will respond to a candidate adversarial 
behavior.

● A reactive adversary policy that 
hierarchically selects human-like skill 
primitives to increase criticality and 
maintain realism.
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SEAL: Evaluation Fairness

Safety-critical scenario generation approaches 
commonly evaluate safety-criticality in-distribution.

SEAL argues that performance on challenging 
scenes is ultimately more important.

Therefore, it leverages SafeShift to create a realistic 
out-of-distribution evaluation setting for scenario 
generation.

75

Scenario Generation using 
SafeShift “hard” scenes



In the context of Trajectory Forecasting:
● A new domain for trajectory forecasting

● A generalizability benchmark

● SafeShift characterization used as a prior for generalizable scene representation

● Bonus: Best Paper Award!

76

A Large Model and Dataset for Airport Surface Movement 
Forecasting
AIAA Aviation and Ascend Forum, 2024
https://ameliacmu.github.io 

https://ameliacmu.github.io


Uptick in close calls at U.S. airports

77



A runway collision at Haneda Airport, Japan

78
Leussink, Daniel, Kaneko, Kaori and Barrington, Lisa. Japan Airlines counts losses from wrecked Tokyo Plane. Reuters, 2024: 
https://www.reuters.com/business/aerospace-defense/japan-airlines-estimates-loss-about-1048-mln-collision-2024-01-03/#:~:text=BIG%20LOSSES,financial%20year%20ending%20March%20
31

January 2nd, 2024

https://www.reuters.com/business/aerospace-defense/japan-airlines-estimates-loss-about-1048-mln-collision-2024-01-03/#:~:text=BIG%20LOSSES,financial%20year%20ending%20March%2031
https://www.reuters.com/business/aerospace-defense/japan-airlines-estimates-loss-about-1048-mln-collision-2024-01-03/#:~:text=BIG%20LOSSES,financial%20year%20ending%20March%2031


A Framework for Airport Surface Movement Forecasting

Amelia’s objectives: 

● Enable data-driven solutions for 
improving the safety and efficiency 
of airport operations.

● Enable scale and diversity for ML 
research in aviation.
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Amelia-42: Enabling Dataset Diversity and Scale

We collect and process a large dataset for airport surface movement covering 42 diverse U.S. airports.

https://huggingface.co/AmeliaCMU/datasets 
80

https://huggingface.co/AmeliaCMU/datasets


Amelia-10: Enabling Generalizable Behavior Forecasting

81

How can we design and evaluate models that generalize across a wide variety of contexts?

Take Off

Holding for Take Off 



Amelia-TF: Trajectory Forecasting Model

82

A safety-informed airport surface movement trajectory forecasting baseline.



83

Amelia-TF: Safety-informed Scene Representation

● Want to generalize across a wide variety of contexts

○ Idea: Leverage safety-priors to encode the scene:

■ Characterize the degree to which an agent might affect 

others in the environment→ Safety-relevance.



Safety-informed Scene Representation – An Example

84

To do so, we use an automated scenario characterization scheme to compute each 
agents kinematic and interactive states.

Kinematic Score:

Acceleration
Jerk 

Speed

Period waiting at hold-short lines 

Interactive Score:

Loss of Separation

Minimum Time to Conflict Point (mTTCP)



Safety-informed Scene Representation – An Example

85

We combine these features into a safety score for each agent, representing how 
relevant it is.



Safety-informed Scene Representation – An Example

86

We select the K-most relevant agents to represent the scene and an ego-agent 
within them 
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Amelia-TF: Scene Encoder and Trajectory Decoder

Local Transformation + Transformer Encoder + GMM Decoder

Ngiam, Jiquan, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs et al. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv 
preprint arXiv:2106.08417 (2021).
Varadarajan, Balakrishnan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Nigamaa Nayakanti, Andre Cornman, Kan Chen et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior 
prediction. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.



Baseline Trajectory Forecasting Results 

88

Multi-Airport; 
Generalist

Each airport’s ADE/FDE; 
white cell → seen, gray cell → unseen

Single-Airport; Specialist Models

Average ADE/FDE 
across airports

NOTE: Airport names are denoted with their International Civil Aviation Organization (ICAO) Code



In the context of Trajectory Forecasting:
● Deployment of pre-trained models

89

Social Robot Tree Search for Long-Horizon 
Navigation in Shared Airspace
IEEE Robotics and Automation Letters, 2024
https://navars.xyz/sorts

https://navars.xyz/sorts
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Social Robot Tree Search (SoRTS)



Social Robot Navigation in Shared Airspace

91

Desired Capabilities:

- Follow navigation norms

- Reason over human behavior and social cues

- Reason over multiple outcomes in the long-term 

future.



Follow Navigation Norms 

We design a reference 
module to provide agents 
with a navigation guideline to 
follow (e.g., a flying pattern) 
given a start location.

92

We also provide an agent with a 
cost map to bias the agent toward 
more desirable areas.

Solely focusing on following navigation guidelines may overlook social interactions.



Social Robot Navigation in Shared Airspace

93

Desired Capabilities:

- Follow navigation norms

- Reason over human behavior and social cues

- Reason over multiple outcomes in the long-term 

future.



Reasoning over Social Cues

94

We design a social module to handle 
short-horizon social dynamics. 

To do so, it leverages a socially-aware 
trajectory prediction model [21], trained offline 
on the TrajAir [20] dataset. 

How to balance the reference vs. social action distributions?

[20] Patrikar, Jay, et al. "Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
[21] I. Navarro and J. Oh, "Social-PatteRNN: Socially-Aware Trajectory Prediction Guided by Motion Patterns," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.



An Initial Planner

Selects optimal next action by simply weighing the reference and the social action 
distributions for the current step,

95

However, short-sighted reasoning might lead to suboptimal results



Social Robot Navigation in Shared Airspace

96

Desired Capabilities:

- Follow navigation norms

- Reason over human behavior and social cues

- Reason over multiple outcomes in the long-term 

future.



A Long-horizon Planner

97

We leverage Monte Carlo Tree Search (MCTS) to reason over multiple long-term outcomes. 

[17] Kocsis, Levente, and Csaba Szepesvári. "Bandit based monte-carlo planning." European conference on machine learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

Uses a tree policy that’s biased by 
reference and the social modules. 

U = R Q S+ +

*Upper Confidence Bound [17]



A Toy Example

98

A robot and a human pilot want to land on the same runway, and 
have to coordinate to do so.

The robot has multiple decision modalities to choose from in order to 
complete the task (e.g, slow-down, speed-up, etc).

The robot has a reference to follow.

The robot is able to characterize social interactions.



Exploring Possible Outcomes
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The robot keeps speed and prioritizes 
the reference. 

Keep 
Speed

Robot Action

Human Action

…

Outcome 1: Collision!



Exploring Possible Outcomes

100

The robot aggressively cuts-in. 

Robot Action

Human Action
Outcome 2: Human takes 

an evasive maneuver to 
avoid a collision.

Keep 
Speed

… …

Cut-in

?



Exploring Possible Outcomes
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The robot yields to the human.

Robot Action

Human Action
Outcome N: Both the human 

and the robot land safely.

Keep 
Speed

… …

Cut-in

…

…

Yield

?



Exploring Possible Outcomes

102

Backpropagate Best Outcome

Robot Action

Human Action

Keep 
Speed

… …

Cut-in

…

…

Yield
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