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VWhatis Trajectory Forecasting?



VWhy do we care about trajectory forecasting in robotics?

Trajectory forecasting because helps us understand how humans interact in shared spaces,

anticipate their future actions, and use that knowledge to guide safe and effective

decision-making and decision-support systems.
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Trajectory Forecasting

Goal: predict the future states for an agent or set of agents given a history of
states and context surrounding an agent,

How do we define these
states? What length of
history is enough?

How do we represent the
What context information

is useful for predicting an
agent’s future?

predictions? How far into

the future should we How do we design

predict? a model of human
behavior?
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Dataset and Inputs Representation




Common domains and use cases

Human Motion Driving
Use cases: service robots, Use cases: personal self-driving,
surveillance, sport analysis. transportation of goods, traffic
management.

r
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Aviation

Use cases: traffic management,
decision-support systems for task
load reduction.



Human Motion “

ETH[1] / UCY[2] JRDB [3] SportVU Data [4]
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Subdomain: Surveillance Subdomain: Service Robots (Social Subdomain: Sports
Navigation) . .
Captures human behavior in public spaces, Utilizes a motion capture system that tracks
like hotels, universities and stores. Captures human behavior in public spaces players, balls, referees.

from a first-person-view.

[1] Lerner, A., Chrysanthou, Y., & Lischinski, D. (2007, September). Crowds by example. In Computer graphics forum (Vol. 26, No. 3, pp. 655-664). Oxford, UK: Blackwell Publishing Ltd.

[2] Pellegrini, S, Ess, A., Schindler, K., & Van Gool, L. (2009, September). You'll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international conference on computer vision (pp.
261-268). IEEE.

[3] Martin-Martin, R., Patel, M., Rezatofighi, H., Shenoi, A., Gwak, J, Frankel, E., ... & Savarese, S. (2021). Jrdb: A dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE
transactions on pattern analysis and machine intelligence, 45(6), 6748-6765.

[4] SportsVVU Data: https:/aithub.com/linouk?3/NBA-Plaver-Movements/tree/master/examples



https://github.com/linouk23/NBA-Player-Movements/tree/master/examples

Urban/Highway Driving

LevelXData (inD, exiD, hiD) [1] WOMD [2] MAN Truck Scenes [3]
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Subdomain: Traffic Management

Subdomain: Autonomous Driving Subdomain: Autonomous Trucking
Captures urban settings from a top-down Captures urban/highway interactions Focus on covering truck-specific -
perspective, typically using RGB data. from first-person view. surroundings (e.g., container terminals),

Focus is generally on developing

larger local regions to understand the
intelligent mobility solutions.

changes between chassis and cabin.

[1] LevelXData: https://levelxdata.com

[2] Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S, ... & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In Proceedings of the
IEEE/CVF international conference on computer vision (pp. 9710-9719).

[3] Fent, F., Kuttenreich, F., Ruch, F., Rizwin, F., Juergens, S., Lechermann, L., ... & Lienkamp, M. (2024). Man truckscenes: A multimodal dataset for autonomous trucking in diverse conditions. Advances in Neural Information
Processing Systems, 37, 62062-62082.
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Aviation

TrajAir [1] Amelia [2]

2.0km
‘(‘/
4.0km
Subdomain: Non-towered Airports Subdomain: Airport Surface Movement Operations
Captures aircraft interaction in a non-towered airport, i.e., airports Captures diverse airport operations in terminal airspace. Airports
where there is no centralized coordination via air traffic controllers. are primarily towered, meaning there is a centralized authority
Interactions are centralized. coordinating interactions.

[1] Patrikar, J., Moon, B., Oh, J., & Scherer, S. (2022, May). Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace. In 2022 international conference on robotics and
automation (icra) (pp. 2525-2531). IEEE.
[2] Navarro, |, Ortega, P, Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024 (p. 4251).



Input Representations

(a) Trajectory and Articulated Pose (b) Intention and Task
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Wang, L., Lavoie, M. A, Papais, S., Nisar, B, Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Modeling Approaches

Modeling Approach

Physics: —t "‘—' —
based &2
Pattern-

based




Wang, L., Lavoie, M. A, Papais, S., Nisar, B., Chen, Y., Ding, W.

Physics-based Models

Motion is predicted by forward
simulating a set of dynamics equations
that follow a physics-inspired model.

Generally simple and acceptable under
mild conditions, such as short-horizon
predictions.

Difficult to effectively design
hand-crafted models that account for all
environmental and social complexities.
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& Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.
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Planning-based Models

Motion is predicted by explicitly reasoning

about the agent’'s long-term motion goals,

and computing possible paths that attain
those goals.

Generally good in structured settings.

Often assume agents are rational and make

optimal motion decisions. May not generalize

well under complex and less structured
settings.

Wang, L., Lavoie, M. A, Papais, S., Nisar, B, Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.
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Pattern-based Models

Approximate a dynamics function from
data, discovering statistical behavioral
patterns.

Can capture complex motion patterns
directly from the data. More suitable for
longer-horizon settings.

Generalizability to unseen settings is
challenging.
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Wang, L., Lavoie, M. A, Papais, S., Nisar, B, Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Qutput Representations




Types of Predictions

Single Trajectory

Model predicts a single, deterministic
trajectory.

-

Simple to implement.

Cannot characterize multimodality and
uncertainty.

Examples: RNNs

Parametric

Model outputs the parameters of a
probability distribution, or mixture of
distributions.

Captures prediction uncertainty, and
mixtures can represent multiple possible
futures.

Underlying distribution might not
match the true distribution. Potential
mixture collapse.

Examples: GMMs, C-VAEs

Non-Parametric

Model outputs trajectory samples without
assuming a parametric distribution.

Flexible at capturing complex
multimodal behaviors.

Often more difficult to evaluate and
computationally expensive.

Examples: Normalizing Flows




Evolution of Pattern-based Approaches



Pattern-based Approaches Timeline




LSTMs + Social Pooling

2015 2017 2019 2021

Idea: Use recurrent sequence models (LSTMs) to model agent temporal dependencies and
add a “social pooling” layer to let hidden states of nearby agents influence each other.

Representative Work: Social LSTM (Alahi et. al, CVPR 2016)

Influence: First type of strategy to replace hand-crafted rules with learned interactions.
Established a problem formulation that was widely explored by many follow-up works.

Strengths: Handle variable length histories; relatively simple and intuitive; strong
performance in short-horizon settings.

Limitations: Unable to represent multiple futures, relied on hand-designed pooling (e.g.,
k-closest agents).

2023 2025

Social LSTM:
Human Trajectory Prediction in Crowded Spaces

Alexandre Alahi*, Kratarth Goel; Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, Silvio Savarese
Stanford University
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LSTMs + Social Pooling + GANSs

2015 2017 2019 2021

Idea: Use GANSs to produce multiple plausible futures but also train models adversarially
to produce socially plausible trajectories.

Representative Work: Social GAN (Gupta et. al, CVPR 2018)
Influence: Addressed the problem of multi-modality

Strengths: Improved sample realism and diversity.

Limitations: Difficult to train, evaluation of diversity/quality/realism was hard; no likelihood
associated to a sample.

Agrim Gupta'

2023

Social GAN: Socially Acceptable Trajectories

with Generative Adversarial Networks

Stanford University'

Justin Johnson'

Li Fei-Fei!

Silvio Savarese!
Ecole Polytechnique Fédérate de Lausanne®

Encoder
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Decoder

2025

Alexandre Alahi'?
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Structured Stochastic Models

2015 2017 2019 2021
-
[ TT—

Idea: Represent scenes as spatio-temporal graphs (agents=nodes, interactions=edges),
use probabilistic models to decode trajectory information (C-VAEs, VRNN, GMMs).

Representative Work: Trajectron (lvanovic et. al, ICCV 2019), Multipath (Varadarajan et al,

ICRA 2021).

Influence: Enabled conditioning and principled/structured representations.

Strengths: Probabilistic methods for representing multimodality and uncertainty, can
incorporate context.

Limitations: Constructing graph-based representations still relied on heuristics. Mode
collapse.

2023 2025

The Trajectron: Probabilistic Multi-Agent Trajectory Modeling
With Dynamic Spatiotemporal Graphs

Boris Ivanovic Marco Pavone
Stanford University

Figure is actually Trajectron++ (2021)



Transformer and Attention-based Models

2015 2017 2019 2021 2023 2025
-
[T

Idea: Use transformers to jointly model social, temporal and other contextual relationships.

Other attention-based models (e.g., GATs) were widely explored here. Motion Transformer with Global Intention

Localization and Local Movement Refinement

Representative Work(s): Agent-Former (Yuan et al, ICCV 2021), Scene-Transformer (Ngiam et al,
ICLR 2021), Motion-Transformer (Shi et al, NeurlPS 2022), Wayformer (Nayakanti et al, ICRA 2023), Shaoshuai Shi, LiJiang, DengxinDai, Bernt Schicle

DAGNet (Monti etal, ICPR 202 1) and many others. Max Planck Institute for Informatics, Saarland Informatics Campus
{sshi, lijiang, ddai, schiele}@mpi-inf.mpg.de

Influence: Attention enabled better, longer-range modeling; worked well with large-scale
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Limitations: Data hungry, computational expensive for larger scenes and context.



Transformer-based Models

2015 2017 2019 2021 2023 2025
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Diffusion-based Models

2015 2017 2019 2021 2023 2025
T
[T

Idea: Learn joint distributions by gradually denoising samples. SceneDiffuser: Efficient and Controllable Driving
Simulation Initialization and Rollout

Representative Work: Scene-Diffuser (Jiang et al, NeurlPS, 2024).

Chiyu Max Jiang Yijing Bai* Andre Cornman* Christopher Davis* Xiukun Huang*
Hong Jeon* Sakshum Kulshrestha* John Lambert* Shuangyu Li* Xuanyu Zhou*
Carlos Fuertes Chang Yuan Mingxing Tan Yin Zhou Dragomir Anguelov

‘Waymo LLC

Influence: Enabled controllability, which propelled other subfields like scenario generation.

#Time Step —————

# Agents Past Future -

AV —
Agent
X, y, length,
. . . P . Behavior Intent Cond  Conditional Unconditional Full Scene
Strengths: Strong sample diversity and realism; flexibility / controllability. Agent N | ks, Bl e R
The Scene Tensor Multi-task Inpainting

Limitations: Denoising can have a high inference cost.



Trajectory Forecasting + Large Models

2015 2017 2019 2021 2023 2025

Idea: Use LLMs/VLMs to inject high-level reasoning priors into trajectory forecasting Trajectory Prediction Meets Large Language Models: A Survey

models. ) o - .
YiXu Ruining Yang Yitian Zhang Yizhou Wang

Jianglin Lu  Mingyuan Zhang LiliSu Yun Fu
Department of Electrical and Computer Engineering, Northeastern University

Representative Work: TBD. See figure on the left for a taxonomy.

Language-Based Trajectory Prediction Methods
( ) ) ] ] [remonnes
. . . . . mmTransformer’21, LMTraj’24, LingRep'22, LCTGen'23, WayDCM'23,
. - SceneTransformer'21 Exploring’24, VAE,;'23, SeGPT'24. GPT-Driver'23,
Influence: Providing predictors with strong commonsense and open-world reasoning. pSTnfomerl, o) ez
MotionLM'23, Wayformer'23, Traj-LLM'24, CTG++'23, Trajectory-LLM'25 XTP-LLM'24,
MTR++'24, HPNet'24, DeMo'24, FlightLLM'25 LLM-Powered'24, CoT-Drive’25

Strengths: Strong zero-shot, few-shot reasoning; flexible conditioning.

Limitations: Computationally expensive; prone to hallucinations; often not great at spatial
reasoning.



E’ How do we know we have a

good model?

Evaluation Strategies
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Task-Agnostic Evaluation

Metrics that focus on quantifying the similarity between the predicted and ground truth

motion, but also capture the multi-modality of human behavior.

Accuracy / Realism Uncertainty Coverage
Minimum Average Minimum Final Kernel Density Estimate Mean Average Precision
Displacement Error Displacement Error (mFDE) (KDE)-based NLL (MAP)
(mADE)
GT
00 ) |:,_| GT
@ Prediction @& Prediction | ' P @ Prediction '.' L
" / . /I ,’I /.

II ,l 7 / /I 7

€@ Prediction é,”,_'__// © Prediction ' _ A8 e €@ Prediction
“ - 4

29

Wang, L., Lavoie, M. A, Papais, S., Nisar, B, Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Task-Agnostic Evaluation

However, single-agent metrics do not

capture joint performance, which can lead to

unnatural and inconsistent predicted social

behavior, e.qg.;

Colliding trajectories

Diverging trajectories for social groups

Baseline (Optimized for min ADE)

Bad
prediction

Best
prediction

OURS (Optimized for min JADE)

Good R/
prediction,,’

Good
prediction

marginal prediction Jjoint prediction
v 9
I
! L]
blue trajectory = 0.3 m f\ \ T
M Sl
4) ( blue scene = 0.31

Sources: top figure [1], bottom figure [2]

[1] Weng, E., Hoshino, H., Ramanan, D., & Kitani, K. (2023). Joint metrics matter: A better standard for trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision
[2] Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H. T. L, Ling, J., ... & Shlens, J. (2021). Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417.
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Benchmarks: ETH / UCY (Human Crowds)

ADEyq /FDEyq | (m), K = 20 Samples

Method |

| ETH Hotel Univ Zaral Zara2 | Average
SGAN [15] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84]0.58/1.18
SoPhie [44] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 | 0.54/1.15
Transformer-TF [12] | 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 | 0.31/0.55
STAR [55] 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 | 0.26/0.53
PECNet [34] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30| 0.29/0.48
Trajectron++ [45] 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 | 0.19/0.41
Ours (AgentFormer) | 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 | 0.23/0.39

Yuan, Y., Weng, X, Ou, Y., & Kitani, K. M. (2021). Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF international conference on computer vision (pp.

9813-9823).
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Benchmarks: WOMD, nuScenes, Argoverse (Urban Driving

nuScenes prediction task

Leaderboard

Motion Prediction

Dataset > 525 DGCN_STLANE 174 4699% 22
> 20240412 CASPFormer 8 8 7.83% 47.839
> 20220501 DSS 92 49.23% 30.99
> 19-0¢ Jack 1 894 56.65

Method Name Objecttype = Evaluation time = SoftmAPv2 minFDE Miss rate Overlap Rate Uses public model pretraining? > 202205 aPredis 235 . o T
Al Show resuits witl > 22-03-07 PGP 267 945 51.90% 34.349
> 20220 CASPNet_v2 75 1.0 53.15 8

Al 04967
> 202 THOMAS 2 041 5.10% 2.4

Al 0.4801
> 2-0 JALMTP 35 988 54.88% 35,759
& bt > 20210915 Autobot 1.0 62.23% 43.879

Al 0.4737
Al 0.4732
Al 0.4710

Argoverse 2: Motion Forecasting Competition

Al 0.4698

Al 0.4678 3 Apr 17,2022 8:00:00 PM EST (GMT - 4:00)
May 31,2099 7:59:59 PM EST (GMT - 4:00)
Al 0.4673
Al 0.4649

Al 0.4648

209

s/2024/motion-prediction

ternalData=all&mapData=all&modalitie

waymo.com/open/challenc

Any

https://www.nuscenes.org/prediction?e

719/overview

J/ove

https://evalai/web/challenges/challenge

Export as JSON

ffRoadRate
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http://waymo.com/open/challenges/2024/motion-prediction/
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
https://eval.ai/web/challenges/challenge-page/1719/overview

Benchmarks: Domain Shift Generalization (Aviation)

How can we design and evaluate models that generalize across a wide variety of contexts?

\

Amelia4

Navarro, I, Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024
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Benchmarks: UniTraj

W o 7 " -
</ My ; General Evaluations

1 ‘* — '
Waymo nuScenes ‘ : MTR
' + = -
i : AutoBot : .
AV 7> METADRIVE ,,) — Fme-Grafmed
AV2 Synthetic 1 \\ ; e Evaluations
Raw Benchmarks 1. Unified Datasets 2. Unified Models 3. Unified Evaluations :

° . W= AV WAV -2 WAV 10
U n ITraj Train Test Train Test ¢ o= V|*°**

RQ1: Generalization RQ2: Data Scaling Dataset Analysis

Feng, L., Bahari, M., Amor, K. M. B., Zablocki, E., Cord, M., & Alahi, A. (2024, September). Unitraj: A unified framework for scalable vehicle trajectory
prediction. In European Conference on Computer Vision (pp. 106-123). Cham: Springer Nature Switzerland.



Problems with Task-Agnostic Evaluation

. . E _
The blue trajectory is the ground go-agent wants to go

truth | H |® straight at the intersection.

The green and purple trajectories
are the ego-agent’s predictions. =

Imagine that both were predicted to

be equally likely and yield the same e
ADE value.

E? How do these predictions

: . lioy? Interacting-agent wants to turn right.
Impact the ego-policy:

Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.



Problems with Task-Agnostic Evaluation

The blue trajectory is the
ground truth

The green and purple
trajectories are the ego-agent’s
predictions.

Imagine that both were
predicted to be equally likely
afRe-yrete-thesameADEvatte,

but the purple one has lower
ADE.

The purple prediction is used to
inform the ego-agent.

The ego realizes itis a
potentially dangerous
trajectory.

Thus it takes an evasive
maneuver, which incurs a
higher planning cost than
would’'ve otherwise the ground
truth plan.
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Problems with Task-Agnostic Evaluation

Task-agnostic metrics are disconnected from the downstream task and from real-world

evaluation and deployment.

Ivanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.
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Task-Aware Evaluation

E? How do we design a cost or

planning-informed metric?

e [ocusison evaluating and

addressing:

o Prediction under perception

. —— Harmless
uncertainty [1]. — Dangerous

H — Ground Truth

o Implications of prediction failures on =(E)$:§2:e;r]'ic\::r

downstream tasks [2, 3, 4].

[1] Stoler, B., Jana, M., Hwang, S., & Oh, J. (2023, October). T2FPV: Dataset and method for correcting first-person view errors in pedestrian trajectory prediction. In 2023 IEEE/RS] International Conference on Intelligent Robots

and Systems (IROS) (pp. 4037-4044). |EEE.
[2] lvanovic, B., & Pavone, M. (2021). Rethinking trajectory forecasting evaluation. arXiv preprint arXiv:2107.10297.

—— Harmless
—— Dangerous
—— Ground Truth

@@ Ego-Vehicle

@@ Other Driver

_ Resulting Ego-

Motion Plan

[3] Farid, A., Veer, S., lvanovic, B., Leung, K., & Pavone, M. (2023, March). Task-relevant failure detection for trajectory predictors in autonomous vehicles. In Conference on Robot Learning (pp. 1959-1969). PMLR.
[4] Nakamura, K., Tian, T., & Bajcsy, A. (2025, January). Not All Errors Are Made Equal: A Regret Metric for Detecting System-level Trajectory Prediction Failures. In Conference on Robot Learning (pp. 4051-4065). PMLR.
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s Trajectory Forecasting Solved?



The State-of-the-Art
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Motion Transformer (MTR), 1st Place === — — = L J e s J L
o ] Initialization Pair Initialization
. . . Agent M: A Predicted Trajectory- ifi @A) Interested A, Othe
Waymo Open Motion Prediction B e O it . Gy e R =

Challenge, 2022.

Table 1: Performance comparison of marginal motion prediction on the validation and test set of
Waymo Open Motion Dataset. {: The results are shown in italic for reference since their performance
is achieved with model ensemble techniques. We only evaluate our default setting MTR on the test
set by submitting to official test server due to the limitation of submission times of WOMD.

Method Reference minADE | minFDE | Miss Rate | mAP 1
MotionCNN [26] CVPRw 2021 0.7400 1.4936 0.2091 0.2136
ReCoAt [66] CVPRw 2021 0.7703 1.6668 0.2437 0.2711
Test DenseTNT [21] ICCV 2021 1.0387 1.5514 0.1573 0.3281
SceneTransformer [37] ICLR 2022 0.6117 1.2116 0.1564 0.2788
MTR (Ours) - 0.6050 1.2207 0.1351 0.4129
TMultiPath++ [49] ICRA 2022 03557 1.1577 0.1340 0.4092
fMTR-Advanced-ens (Ours) - 0.5640 1.1344 0.1160 0.4492

Shi, S, Jiang, L., Dai, D., & Schiele, B. (2022). Motion transformer with global intention localization and local movement refinement. Advances in Neural Information Processing Systems, 35, 6531-6543.



The State-of-the-Art

VWaymo Open Motion
Prediction Challenge

leaderboard, 2024.

Variants of MTR

https:/waymo.com/open/challenges/2024/motion-prediction

Method Name

Objecttype =
All
All
All
All
Al
All
All
All
All
All
All
All

All

Evaluation metrics have not
improved significantly since

Evaluationtime =

Avg

Avg

Avg

Avg

E’ Is the problem solved?

SoftmAPv2
Show results witl

0.4967
0.4801
0.4737
0.4737
0.4732
0.4710
0.4698
0.4678
0.4673
0.4649
0.4648

0.4646

mAP v2 minADE minFDE Miss rate Overlap Rate

0.4859 0.5554 1.1062 0.1098
0.4598 0.5563 1.1295 0.1087
0.4531 0.5564 1.1188 0.1084
0.4665 0.5680 1.1766 0.1204
0.4624 0.5690 RE 0.1183
0.4604 0.5714 1.1667 0.1162
0.4587 0.5716 1.1668 0.1183
0.4566 0.5723 1.1668 0.1176
0.4523 0.5737 1.1697 0.1160
0.4445 0.5702 1.1627 0.1177
0.4540 0.5693 1.1574 0.1156
0.4441 0.5700 1.1621 0.1174
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https://waymo.com/open/challenges/2024/motion-prediction

Benchmark-Reality Gap

The Goal:

The Reality:

Human-involved rear-end accidents
1.9 per million miles traveled
VS.

ADS-involved rear-end accidents

9.1 per million miles traveled

Huang, Chunxi, and Xiao Wen. Characteristics of Rear-End Collisions: A Comparison between ADS-Involved Crashes and ADAS-Involved Crashes 2.
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http://www.youtube.com/watch?v=h7PGrAlPELc

VWhat's behind the generalization gap?

Existing challenges in the field:

Perception-level Perception errors and perturbations to the input data

BEIEHEVEL Non-uniform data coverage

How do we use forecasts downstream?

Control-level
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Brittleness to Perception Errors

CoIInsngn -0 @ -
o P -—h___——" ;._ PSS
. -e- Observed sequence
Carefully-crafted perturbations can cause

-~ Perturbed observation (<5cm)
significant prediction failures that lead to

-® Correctly predicted future sequence
@~ Wrong prediction leading to a collision
—— Observati End points —— Observati = End point:
Predicti Starting point: i Predictior Starting point:
. . 8 8
unrealistic and/or unsafe behavior

ervation = End points
-wee Predicton e Starting points

N S  Candicste Target
. N\ "t Target | _ “.. Canddate Target . S
eSS E Sy £
> e Ry L > i A B
(RS Pl
Py
2 0 R
i

: ’3
1o : ’i
b 4l Y
x[m) 5 -0 x(m) o -0 x[m)

(a) D-Pool (b) S-LSTM
technologies, 141, 103705.

(c) S-Att
Saadatnejad, S., Bahari, M., Khorsandi, P., Saneian, M., Moosavi-Dezfooli, S. M., & Alahi, A. (2022). Are socially-aware trajectory prediction models really socially-aware?. Transportation research part C: emerging

i S

-
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Lack of Meaningful Interactivity

103

The majority of recorded driving data é}mz
consists of uneventful driving with 5
[S

limited interactions [1].

10°

Straight Iane-keeping>

SafeShift §

— E L §
Crossing intersection
., b | ;

0.0 0.2
90% of data

[1] Ding, W., Veer, S, Leung, K., Cao, Y., & Pavone, M. (2025). Surprise potential as a measure of interactivity in driving scenarios. arXiv preprint arXiv:2502.05677.

0.4 6 0.8 1.0
9% of data 1% of data
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Lack of Meaningful Interactivity [SafeShift IJ

The majority of recorded driving data
consists of uneventful driving with
limited interactions [1].

46
[1] Ding, W., Veer, S, Leung, K., Cao, Y., & Pavone, M. (2025). Surprise potential as a measure of interactivity in driving scenarios. arXiv preprint arXiv:2502.05677.



The Curse of Rarity SafeShift 8
SEAL £

Complex and safety-critical scenarios in real-world datasets are rare, which makes
leveraging real-world datasets to train and validate robust policies challenging.

Nominal
Scenarios

SampLe Criticality and Complexity

Safety-Critical
Scenarios

Number of Samples

[1] Stoler®, B., Navarro*, I, Jana, M., Hwang, S., Francis, J., & Oh, J. (2024, June). Safeshift: Safety-informed distribution shifts for robust trajectory prediction in autonomous driving. In 2024 |EEE Intelligent Vehicles
Symposium (V) (pp. 1179-1186). IEEE. 47

[2] Stoler, B., Navarro, |, Francis, J., & Oh, J. (2025). SEAL: Towards safe autonomous driving via skill-enabled adversary learning for closed-loop scenario generation. |IEEE Robotics and Automation Letters, (99), 1-8.



Operational Restrictions EAITIG"H&J

Ensuring uniform data coverage is difficult and expensive to attaining, which makes
generalizability in unseen environment challenging.

Operational Restrictions:

Geofences VWeather Time of Day Road Type

] L}
9 /777
’%’ H = lé;f

48
Navarro, I, Ortega, P., Patrikar, J., Wang, H., Ye, Z., Park, J. H., ... & Scherer, S. (2024). AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. In AIAA AVIATION FORUM AND ASCEND 2024



Deployability SORTS

Control

i Planning PR

Inter-Module
Representation

Uncertainty Awareness

Quantification
® ® .@ Propagation
® e .:. ®  Calibration
@ @ Reduction

How do we deploy trajectory forecasting
models and guarantee generalizability
and rObUStneSS7 End-to-End Multi-Task System-Aligned Closed-Loop

Joint Learning Evaluation

[ ] Perception Uncertainty

Prediction Uncertainty

Information / Gradient Propagation Robustito Perception'Naise

= Ego-conditioned Joint Prediction
Ll GOoOD?
Safety-Aware and Task-Oriented

Temporal Consistency

Prediction-Informed Perception

Planning-Informed Prediction

¢o000

Joint Perception, Prediction, Planning
Latency

49

Wang, L., Lavoie, M. A, Papais, S., Nisar, B, Chen, Y., Ding, W., ... & Waslander, S. (2025). Deployable and Generalizable Motion Prediction: Taxonomy, Open Challenges and Future Directions. arXiv preprint arXiv:2505.09074.



Trajectory Forecasting in my PhD



Some of Our Recent Works

Relevance to
Trajectory Forecasting

aVa =N
Safety-informed Distribution Shifts for Robust Scenario Mining:
a e I Trajectory Prediction in Autonomous Driving Robustness Benchmark
|IEEE Intelligent Vehicles Symposium, 2024
7z N\ v
N £ =
Skills-Enabled Adversary Learning for Closed-Loop Closed-Loop Evaluation:
Scenario Generation Robustness Benchmark
IEEE Robotics and Automation Letters, 2025
O\ W
N\ #F£ =
A Large Model and Dataset for Airport Surface New Domain and Dataset
m e Ia + Movement Forecasting Domain Shift Benchmark
AIAA Aviation and Ascend Forum, 2024
O\l W
N\ £ N
Social Robot Tree Search for Long-Horizon New Domain:
0 Navigation in Shared Airspace Model Deployability
IEEE Robotics and Automation Letters, 2024
/N W




/
D Safety-informed Distribution Shift for Robust
SafEShIft . Trajectory Prediction in Autonomous Driving
|IEEE Intelligent Vehicles Symposium, 2024
https://navars.xyz/safeshift

. J

In the context of Trajectory Forecasting:
e A scenario characterization paradigm for trajectory datasets
e An out-of-distribution robustness benchmark

e Bonus: applied in industry!
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https://navars.xyz/safeshift

Assessing the Generalizability of Autonomous Vehicles (AV)

The "Curse of Rarity™

e Safety-critical scenarios in Nominal 1} safey Citcl
real-world datasets are rare. 8 !
£ :
7 :
e Directly leveraging real-world 3 :
IS 1
datasets to train and validate z Ih
Hln.n._
ro b U St pO U C| es |S Ch a ue N g | N g ) Sample Criticality and Complexity
Ding, Wenhao, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, and Ding Zhao. A survey on safety-critical driving scenario generation—a methodological perspective. IEEE Transactions on Intelligent Transportation Systems 53

24, no.7 (2023): 6971-6988.



Assessing the Generalizability of AVs

Existing methodologies:

On-road testing [/] Scenario Generation [0]

+ Notdangerous
- Potentially unrealistic

+  Realistic
- Potentially dangerous

[6] W. Ding, C. Xu, M. Arief, H. Lin, B. Li, and D. Zhao. A survey on safety-critical driving scenario generation—a methodological perspective. |EEE Transactions on Intelligent Transportation Systems, 2023. 54
[7]1 W. Huang, K. Wang, Y. Lv, and F. Zhu. Autonomous vehicles testing methods review in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 163-168.



Assessing the Generalizability of AVs — An Alternative

Broadening the concept of safety:

Acting near safety-critically, e.qg., \

recklessly or distractedly.

/Acting proactively to avoid safety
criticality, e.g., swerving, braking.

Source: https://www.pbh2.com/wif/close-call-qifs/5/

1

Safety-relevance
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https://www.pbh2.com/wtf/close-call-gifs/5/

SafeShift

A scenario characterization framework through counterfactual probing for identifying
and studying safety-relevance in trajectory datasets via safety-informed priors.

Scenario Scenario Scoring Downstream Tasks
: Ground Truth (GT) Future Safety-Informed Distribution
An agressive Shift Creation
lane-change % : 1
[ Scoring " Combining | ,” 2| %’,” /
Ego-agent proactively Function ‘ Function g //;////// o
Tt DSBS
. reduces speed. A}. i ot 8 |71 _/Scores i
Ego- t .
@ Egoagen Counterfactual Future i . Fmal
@) Interacting agent Extrapolation (FE) 2 D 3 Score '. Robust Trajectory Prediction
A ‘\\ i\ " Features /| High Score | : ) B
- : ~— | > R
— 7~ . Real-world g ﬂ-li\—
::@' Dataset Ego-agent fails to anticipate. = |
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A Toy Example

Scenario: The yellow vehicle performs an

aggressive lane change in front of the red
vehicle.

Real Outcome: The proactive red vehicle anticipates
and slows down to allow the lane change.

—How could’ve this scenario gone wrong?

Real-world
Dataset

57



A Toy Example

Scenario: The yellow vehicle performs an
aggressive lane change in front of the red
vehicle.

Reate - . . .
aRe-Stewsaowr-toaHew-tretare-change:

— What if... the red vehicle is distracted,

doesn’t anticipate the lane change?

The score of the counterfactual probe

incurred a high cost, thus, the scenario

is safety-relevant.
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Scenario Features

Correlation matrices for individual and interaction features.

Exceeds Speed - 0.25

AccX =

AccY =

Jerk-X =

JerkY

Waiting Period

Intane - 0.4 0.051

Trajectory Anomaly = 0.57  0.023 0.11

3 S
= P 2

-0.068

THW

TIC —

ORAC - -0.0019 -0.0052

Scene mTTcP - 0.13 -0.044
Agents mTTCP = 0.18 0.021
Collisions -~ 0.0062 -0.0062

Traj-Pair Anomaly —[

0.00032 -0.0054 -0.022

0.042 -0.0024

1.0

0.8

-0.6

-0.4

- 0.2

-0.0

O
o W

(a) Feature Correlation for Individual State Features (b) Feature Correlation for Interaction State Features



Scenario Scores

The score combines per-agent individual and social features:

IndScore® = W;,q - [mfxx(v,gi)

)|vevmd]

SceneScore

SocScore™ = W,,, - mtax(vt(i’j)) | v e Vsoc}

) v
Trachore(Z) = IndScore(l)—I—Z SocScore(®?) (For all agents)

JFi

Table 6.2: Trajectory scoring variations.

Variation IndScore SocScore
Ground Truth (GT) X&), (Xg)T7 X(C{)T)
Future Extrapolated (F'E) X%)E (X(;‘};, X%)E)
Asymmetric (AS) Xgé)E (X?E, Xg)T)
Combined (CO) max(TrajScoreg,, TrajScorey;)

Asymmetric Combined (AC) max(TrajScorey;, TrajScore,)
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A Real Example

.

& IS ¥/
Original scenario: Counterfactual scenario:

Black vehicle sees the standing Distracted black vehicle does not
vehicle ahead and slows down to see the standing vehicle, keeps

avoid collision.

going until it collides.

61
Note: Scenario obtained from a subset of the WWaymo Open Motion Dataset (WOMD)



Expanding the Long-tail

Density function across scores for different scoring strategies.

SafeShift wants to pull
/ down the nominal mode

)
Ground Truth: High density ﬂ — D ;
mode representing ] Ground Truth Safegh lﬁ
low-scored (nominal) ——— Future Extrapolated )
scenarios. / ST Safegh |ft
' 8 : . +Counterfactual
—— Asymmetric .
O _ _ Probing
e — Asymmetrlc Combl ned (i.e., mining for safety-relevant
scenarios)
Ground Truth: Low density r
long-tail representing

high-scored scenarios

- 2

...to push up the long-tail density and obtain an
out-of-distribution set.



INn-Distribution vs Out-of-Distribution Results

In-Distribution Scenes

!
1 AN

Score: 8.41 Score: 13.67
L]
|

Score: 22.01

Out-of-Distribution Scenes

Score: 45.24 = e

/Y

@ stop signs D Traffic Lights [ Speed Bumps [——] Crosswalks

Low Scored
Trajectory

High Scored
Trajectory

Agent Start
Location (all)
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Metrics

We analyze widely accepted trajectory prediction metrics in autonomous driving:

Average Displacement
Error (ADE)

Q Prediction

o Prediction

o

Final Displacement Error Mean Average Precision Collision Rate
(FDE) (MAP) (CR)

G

L

! Q Prediction

! ! 0 Prediction
1

U
!
) ,l . / /I /.
s .
// ’ s .7 ..
.7 . el o Prediction .

0 Predictions GT

T
1
1

!

(X K<l
OPrediction ) ]
1

‘-e’:--—””o Prediction
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In-Distribution vs Out-of-Distribution Results

VWant to observe an increased GT crash rate in the test set (ODD) w.rt. GT val set (ID)

TABLE II: Distribution shift experiments in WOMD [5]. ADE / FDE is in meters. A,,; is the change in test collision rate
(CR) from the corresponding val CR. A more drastic increase is better.

~280
. Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
Data Split Method ADE/FDE mAP CR  ADE/FDE mAP  CR (Ayy)
GT -/- - 0.008 -/- - 0.009 (+12.5%)
Uniform MTR [27] 0.73/1.58 0.30 0.062 0.73/1.59 0.31 0.061 (—1.60%)
A-VRNN [24] 1.80 / 4.63 0.06 0.057 1.82 / 4.67 0.06  0.058 (+1.80%)
GT -/ - - 0.009 -/ - - 0.007 (—22.2%)
Clusters [18] MTR 0.69 / 1.50 0.35 0.060 0.71 / 1.55 0.33  0.051 (—15.0%)
A-VRNN 1.79 /1 4.59 0.08 0.062 1.82 7/ 4.70 0.07  0.049 (—21.0%)
~595
GT -/ - - 0.005 -/ - - 0.017 (+240%)
Scoring (Ours) MTR 0.72/ 1.59 0.32 0.044 0.74 / 1.59 0.30  0.100 (+127%)
A-VRNN 1.99 / 5.26 0.05 0.042 213 5.55 0.05  0.099 (+136%)
GT: Ground truth tracks
65

Note: experiments done on a subset of ~170k (20%) scenarios from WOMD (~135k for train/val and ~35k for test).



Unremediated Trajectory Prediction

‘ How can we remediate these models to mitigate the collision rates

VWant to observe models
incurred and improve model generalizability under OOD conditions?

yonding val set (ID)

TABLE II: Distribution shift experiments in WOMD [5]. ADE / FDE is in meters. A,,; is the change in test collision rate
(CR) from the corresponding val CR. A more drastic increase is better.

. Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
Data Split Method ADE /FDE mAP CR ADE/FDE mAP  CR (Ayg)
GT =g : 0.008 g - 0.009 (+12.5%)
URa Ee MTR [27] 073/158 030 0062 073/159 031 0061 (—1.60%)
A-VRNN [24] 180/463 006 0057 182/467 006 0.058 (+1.80%)
GT i ] 0.009 - - 0.007 (—22.2%)
Clusters [18] MTR 069/150 035 10060 071/155 033 0051 (—15.0%)
A-VRNN 179/459 008 0062 182/470 007 0.049 (—21.0%)
GT e ] 0.005 = - 0.017 (+240%)
Scoring (Ours) MTR 072/159 032 0044  074/159 030 0100 (+127%) | ez
A-VRNN 199/526 005 0042  213/555 005 0.099 (+136%) | ool

GT: Ground truth tracks

66

Note: experiments done on a subset of ~170k (20%) scenarios from WOMD.



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

Difficulty-based sample

S Counterfactual Biasing Collision Loss
weighting
To encourage the model to not treat To add counterfactual Toadd coLU;iqn-avvareness by
all scenarios equally and care about understanding to the model using faV?“f prgdmﬂons that d? not
safety-relevant situations. the extrapolated futures. COL.L'de V\_/'th other agents’ GT
trajectories.

N
N1 , :
WeightedLoss) = N E Loss® . Scoref:)c

X. Zhou, O. Wu, W. Zhu, and Z. Liang, Understanding difficulty-based sample weighting with a universal difficulty measure in Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2022, pp. 68-84.
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Generalizable Trajectory Prediction under Out-of-Distribution Conditions
VWant to mitigate the models’ crash rates in the test set (ODD) w.rt. the corresponding val set (ID)

TABLE III: Robust trajectory prediction experiments in WOMD [5]. ADE / FDE is in meters. A;.4; is the change in test
CR from the un-remediated test CR for each method. A more drastic decrease is better.

. Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
Data Split Method ADE / FDE  mAP CR ADE/FDE mAP CR (Ajest)
GT P - 0.005 i - 0017( - )
MTR 072/159 032 0044  074/159 030 0.100( - ) ~3482
Scoring (Ouy MIR+F+[18]  073/15 032 0043 0.75/159 030 0.099 (—1.00%) MESUEUES
g MTR + Ours 083/180 025 0.037 0.89/191 022 0.086 (—14.0%)
A-VRNN 1.99/526  0.05 0.042 2.13/555 005 009 ( - )

A-VRNN + F+  205/524 006 0041  223/573 006 0.103 (+4.04%) I
A-VRNN + Ours 1.76 /4.61  0.06 0.039 191/494 006 0.093 (—6.06%) | [ SHES

GT: Ground truth tracks, F+: Frenet+ Strategy [18]
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Generalizable Trajectory Prediction under Out-of-Distribution Conditions -
Ablations

Table 6.6: Remediation strategy ablation study based on our proposed approach in
Section 6.3.6 utilizing MTR [65] on WOMD [57]. ADE / FDE is in meters. A is the change
in test CR from the un-remediated MTR test CR.

Remediation Validation Set (In-Distribution) Testing Set (Out-of-Distribution)

ablatien. Newe SC CL  ADE/FDE mAP CR ADE /FDE mAP  CR (Aes)

MTR [65] . ; 0.72 /159 0.32 0.044 074 /159 030 0.100( - )
MTR + Ours (SC only) v - 0.74 /1.63 0.31 0.046 0.74 /161 0.29 0.103 (+3.00%)
MTR + Ours (CL only) - i 0.81 /177  0.27 0.038 088 /192 023  0.093 (—7.00%)
MTR + Ours (Full) % % 0.83 /180 0.25 0.037 0.89 /191 022 0.086 (—14.0%)

SC: Score incorporation, CL: Collision loss objective.



Generalizable Trajectory Prediction under Out-of-Distribution Conditions

Original Safety-aware

o
s =

‘ . Interactin Background Predicted Agent Start isi
.Stop Signs D Traffic Lights [__| Crosswalks s ptven 9 i o e Ly .Logation ) Collision
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Towards Safe Autonomous Driving via Skills-Enabled

Adversary Learning for Closed-Loop Scenario Generation
|IEEE Robotics and Automation Letters, 2025
https://navars.xyz/seal

SEALR

In the context of Trajectory Forecasting:

J

e Predictors used as a prior for candidate trajectory selection.
e SafeShift scenarios used as an evaluation fairness benchmark.

e Bonus: applied in industry!

% stack
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https://navars.xyz/seal

Skill-Enabled Adversary Learning for Scenario Generation

Observation k

Adversary Prior art
Agent
Ego
Agent
Our
approach

\’

Naive Adversarial Generation

Heuristic Selection Overly aggressive, Non-

Function reactive Adversary
Collides with Ego? Follow Colliding
Trajectory

—

D

|
v
X

Skill-Enabled Adversary Learning (SEAL)

Learned Scoring Function Skill Priors Reactive Adversary
Balances Collision + Behavior Deviation objectives Benign & Adversarial Iterative Skill Sampling
Adversary's Scored Behavior Distributions /

Trajectories
Measure
Scene Score Space #1 n
Encoder Network Measure | —
Space #2 J
Low High
Score Score

Observation k+1
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Scenario Realism

SOTA adversarial scenario-generation
approaches often struggle to provide useful
training stimuli to closed-loop agents:

e Limited view of safety-criticality, often
only focused on optimizing unrealistic
and overly-aggressive adversarial
behavior

e Lacking reactivity to an ego-agent’s
behavior diversity.
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|dea: Skill-Enabled Adversary Learning (SEAL)

SEAL introduces two novel components:

@ No Prior

e A learned objective function to
anticipate how a reactive ego agent
will respond to a candidate adversarial
behavior.

e A reactive adversary policy that
hierarchically selects human-like skill
primitives to increase criticality and
maintain realism.
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SEAL: Evaluation Fairness

Safety-critical scenario generation approaches
commonly evaluate safety-criticality in-distribution.

SEAL argues that performance on challenging
scenes is ultimately more important.

Therefore, it leverages SafeShift to create a realistic
out-of-distribution evaluation setting for scenario
generation.

Scenario Generation using
SafeShift "hard” scenes
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https://ameliacmu.github.io

/
O A Large Model and Dataset for Airport Surface Movement
melia4
AIAA Aviation and Ascend Forum, 2024
-

In the context of Trajectory Forecasting:
e A new domain for trajectory forecasting
e A generalizability benchmark
e  SafeShift characterization used as a prior for generalizable scene representation

e Bonus: Best Paper Award!
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Uptick in close calls at U.S. airports

.

Airline Close Calls Happen Far More
Often Than Previously Known

Graphics by Leanne Abraham, Eleanor Lutz and Ella Koeze
Aug. 21,2023

What's Behind the Uptick in Close Calls at
U.S. Airports?

Anincrease in near collisions at U.S. airports should be a "wake-up call," say
government officials and aviation experts. What'

being done about it?

an Cudahy.
December 18,2023

Close Calls on SFO Ruh;m;ys Are Just Tip of the Iceberg In

Broader National Trend

strains are mounting up.

at's causing the issue? And what's

More Airport Close Calls: This Is Getting
Serious
he air travel system is under constant pressur

€ to move more people, faster. The

l: JAMES FALLOWS

Share

LOCAL

FAA, NTSB investigating several
serious close calls amid record-
breaking air travel

0080060
By Kirstin Garriss, CMG Washington News Bureau

uly 05, 2024 at 5:55 pm EDT 77




A runway collision at Haneda Airport, Japan

January 2nd, 2024

Japan Airlines counts losses from
wrecked Tokyo plane

By Daniel Leussink, Kaori Kaneko and Lisa Barrington
January 4, 2024 1:12 PM CMT+5:30 - Updated 2 hours ago

Planes collide at Tokyo airport
Japan Airlines flight 516 collided with a Coast Guard aircraft while landing at Haneda
Airport in Japan’s capital Tokyo on Jan. 2.

Flight 516 JAPAN
wreckage

L)
] T
A Haneda
F Airport
L Crash on i
lo® Runway 34R
Yoy Japan Airlines
flight 516 from Sapporo
Tokyo's
Haneda airport
ol

500 m

Sources: FlightRadar24; Maps4News
Vijdan Mohammad Kawoosa * Jan. 2, 2024 | REUTERS

Leussink, Daniel, Kaneko, Kaori and Barrington, Lisa. Japan Airlines counts losses from wrecked Tokyo Plane. Reuters, 2024:

https://www.reuters.com/business/a
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A Framework for Airport Surface Movement Forecasting

Amelia’s objectives:

e [nable data-driven solutions for
improving the safety and efficiency
of airport operations.

e Enable scale and diversity for ML
research in aviation.

p=0.9
p=0.1
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Amelia-42: Enabling Dataset Diversity and Scale

VWe collect and process a large dataset for airport surface movement covering 42 diverse U.S. airports.
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Amelia-10: Enabling Generalizable Behavior Forecasting

How can we design and evaluate models that generalize across a wide variety of contexts?

ol Tk Off

»)- @] Holding for Take Off
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Amelia-TF: Trajectory Forecasting Model

A safety-informed airport surface movement trajectory forecasting baseline.
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Amelia-TF: Safety-informed Scene Representation

Input Scene

VWant to generalize across a wide variety of contexts

O

|Idea: Leverage safety-priors to encode the scene:

Characterize the degree to which an agent might affect

others in the environment— Safety-relevance.
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Safety-informed Scene Representation — An Example

To do so, we use an automated scenario characterization scheme to compute each

agents kinematic and interactive states.

Input Scene

Agent Scoring
L S \\\
Kinematic
Scores

Interaction
Scores

. o i
—+ Moving Agent O)- Stationary Agent

,,.’ T }—1

e

Kinematic Score:

Acceleration
Jerk
Speed

Period waiting at hold-short lines

Interactive Score:

Loss of Separation

\ Minimum Time to Conflict Point (mTTCP)

\

J
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Safety-informed Scene Representation — An Example

VWe combine these features into a safety score for each agent, representing how
relevantitis.

Scored Agents

Agent Scoring
= F
\ " or—— I
N Kinematic
éﬁé Scores |
Dt - eass
Interaction I
\% Scores
(& =)




Safety-informed Scene Representation — An Example

We select the K-most relevant agents to represent the scene and an ego-agent

within them

Scored Agents Scene Representation
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Amelia- | F: Scene Encoder and Trajectory Decoder

L ocal Transformation + Transformer Encoder + GMM Decoder
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Ngiam, Jiquan, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs et al. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv

preprint arXiv:2106.08417 (2021).
Varadarajan, Balakrishnan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Nigamaa Nayakanti, Andre Cornman, Kan Chen et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior 87

prediction. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.



Baseline Trajectory Forecasting Results

Single-Airport; Specialist Models

Table 6 We show results for the multi-airport experiment for a prediction horizon of F = 20.

KMDW KEWR KBOS KSFO KSEA KDCA PANC KLAX KIFK RHSY Average

Experiment mADE/mFDE mADE /mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE mADE/mFDE
L Single-Airport  3.30/6.12 6.61/12.92 5.58/10.90 5.06/9.82 9.76/18.35 4741922 10.11/2087  11.36/20.63 458/9.52 273/5.12 6.38/12.35
1-Seen 3.30/6.12 13.76/3091  11.30/25.58 9.68/21.73 1407/31.44  7.80/16.07 15.00/3375  15.49/33.13 7.40/16.77 7.43/17.11 10.52/23.26
2-Seen 3.31/6.23 6.92/1345 8.17/17.63 7.49/17.18 1057/22.86  6.04/12.47 10.61/23.00  12.78/26.34 521/11.15 449/9.64 7.56 /15.99
3-Seen 3.26/ 6.59 7.25/14.20 6.05/12.11 7.25/15.50 9.90/20.95 6.16/12.74 9.53/20.26 10.99/21.86  4.96/10.54 433/9.29 6.97 / 14.40
4-Seen 3.52/6.74 726/14.33 6.31/12.68 5.66/11.33 9.79/20.42 5.99/12.28 9.22/19.14 1070/21.16  4.80/10.27 4.18/9.05 6.74 /13.74
7-Seen 3.59/7.03 730/14.54 6.59/13.59 5.73/11.65 8.30/16.71 4.55/8.82 7.48/14.94 9.99/19.35 4.66/9.96 4.64/9.85 6.28 /12.64
All-Seen 3.88/7.70 7.87/15.80 6.87/14.34 6.09/ 12.64 9.03/18.35 4.84/9.55 8.24/16.75 8.80 /16.73 4.56/9.64 3.22/625 6.34 /12.77

Each airport's ADE/FDE; Average ADE/FDE |
white cell — seen, gray cell — unseen across airports

Multi-Airport;
Generalist

NOTE: Airport names are denoted with their International Civil Aviation Organization (ICAO) Code



|EEE Robotics and Automation Letters, 2024
https://navars.xyz/sorts

(
Social Robot Tree Search for Long-Horizon
So RTS + Navigation in Shared Airspace
|
N

In the context of Trajectory Forecasting:

Deployment of pre-trained models
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Social Robot Tree Search (SoRTS)
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current state
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\ |
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+ 2NM

v

Human's
current state

Social Robot
Tree Search
(SoRTYS)

v

Outcome 1: Pilots
collide.

. 2NM
Outcome 2: Robot cut's
in; human takes evasive
maneuver collide

Monte Carlo Tree Search

Backpropdgale

outcome

Outcome N: Robot
yields; both pilots land
safely.

Robot's current state

= -

Human's current state

Social action

Robot's predicted future states e
distribution

Offline-trained: Socially-
aware Motion Prediction Model
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p Reference Path ‘
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Social Robot Navigation in Shared Airspace

Desired Capabilities:

Follow navigation norms
Reason over human behavior and social cues
Reason over multiple outcomes in the long-term

future.

91



Follow Navigation Norms

Solely focusing on following navigation guidelines may overlook social interactions.

VWe also provide an agent with a
cost map to bias the agent toward -
more desirable areas. \

<~

We design a reference

module to provide agents
with a navigation guidelineto --~_
follow (e.g., a flying pattern) S Ribots

current state

given a start location. S B

e = I

Closest reference Reference
future state action Value action
distribution distribution

Reference Path

Reference Module Cost Map




Social Robot Navigation in Shared Airspace

Desired Capabilities:

Follow navigation norms
Reason over human behavior and social cues
Reason over multiple outcomes in the long-term

future.
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Reasoning over Social Cues

How to balance the reference vs. social action distributions?

>
£

_.m
Robot's current state

= Social action
Robot's predicted future states R e
distribution

Offline-trained: Socially-

We design a social module to handle ¥ om0
A aware Motion Prediction Model

short-horizon social dynamics. T
Social Module -

To do so, it leverages a socially-aware
trajectory prediction model [21], trained offline e
on the TrajAir [20] dataset. 7

o
— -
e o o o o ===

[20] Patrikar, Jay, et al. "Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
[21] I. Navarro and J. Oh, "Social-PatteRNN: Socially-Aware Trajectory Prediction Guided by Motion Patterns," 2022 IEEE/RS) International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.



An Initial Planner

Selects optimal next action by simply weighing the reference and the sooal action
distributions for the current step,

,/’ I/
¥ v

a” = arg meajl( [)‘ p’l“(st7a) + (]‘ o )‘) ) pS(Stva)]

However, short-sighted reasoning might lead to suboptimal results
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Social Robot Navigation in Shared Airspace

Desired Capabilities:

Follow navigation norms
Reason over human behavior and social cues
Reason over multiple outcomes in the long-term

future.
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A Long-horizon Planner

We leverage Monte Carlo Tree Search (MCTS) to reason over multiple long-term outcomes.

l

maneuver collide.

Monte Carlo Tree Search

Backpropagale
outcome

3
o0
< 2NM « 2NM
Outcome 1: Pilots Outcome 2: Robot cut's Outcome N: Robot
collide. in; human takes evasive yields; both pilots land

safely.

Uses a tree policy that's biased by
reference and the social modules.

*Upper Confidence Bound [17]

[17] Kocsis, Levente, and Csaba Szepesvari. "Bandit based monte-carlo planning." European conference on machine learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
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A Toy Example

A robot and a human pilot want to land on the same runway, and

:*‘ have to coordinate to do so.

The robot has multiple decision modalities to choose from in order to
Jumars | complete the task (e.g, slow-down, speed-up, etc).

The robot has a reference to follow.

The robot is able to characterize social interactions.

98



Exploring Possible Outcomes

The robot keeps speed and prioritizes

pa—"3 the reference.
X Keep \
: dtm Speed \
/

Rob
curren

ot's
t state
Human's \
current state
, 2 NM

‘ Outcome 1: Collision!

Human Action

. Robot Action
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Exploring Possible Outcomes

The robot aggressively cuts-in.

! ~ 2 NM
LE N )

\ ‘ Outcome 2: Human takes

Human Action

an evasive maneuver to

@ rovot Action =+ avoid a collision.
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Exploring Possible Outcomes

The robot yields to the human.

Outcome N: Both the human
Human Action \ ‘ { and the robot land safely.
‘ Robot Action = § =
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Exploring Possible Outcomes

Human Action \ 4 .

‘ Robot Action E— da ]» 3

Backpropagate Best Outcome
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