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𝜏3
𝐻 = 𝜏2

𝐻

𝐽𝑅(𝜏𝑅, 𝜏𝐻)

𝜏𝑅

𝐾

𝐾

𝜏𝑅

𝜏3
𝑅 ∈ 𝒮𝑅 𝜏2

𝐻

𝜏4
𝑅 = 𝜏3

𝑅𝜏4
𝐻 ∈ 𝒮𝐻 𝜏3

𝑅

⋮ ⋮

⇓
𝜏𝐾

𝐻≈ 𝜏K−1
𝐻  and 𝜏𝐾

𝑅 ≈ 𝜏𝐾−1
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𝑖 ∈ {𝐻, 𝑅}𝜏𝐾
𝑖 = 𝜏𝑖∗ ∈ 𝒮𝑖 𝜏¬𝑖∗ ,Satisfies Nash

 conditions
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𝐾

𝐾

𝜏𝐻

• Pro:
• Easy to implement with standard optimization tools
• If it converges, it finds a Nash equilibrium

𝐽𝑅(𝜏𝑅, 𝜏𝐻)

𝜏𝑅

𝐾

𝐾

𝜏𝑅

• Contra:
• No convergence guarantees (cycling) 
• Slow convergence ⇒ many expensive optimization steps

In practice: mainly useful as debugging tool!

Can we do better?



Solving Open-Loop Games as Mixed Complementarity Problems

Key Idea: Search for trajectory profile that satisfies the coupled KKT conditions.



Player i

Optimization Problem:

s. t.  𝜏𝑖 ∈ 𝒦 𝑖(𝜏¬𝑖)

min
𝜏𝑖

 𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖) 
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Key Idea: Search for trajectory profile that satisfies the coupled KKT conditions.
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 𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖) Optimization Problem:

s. t.  ℎ𝑖 𝜏𝑖 , 𝜏¬𝑖 ≥ 0 
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Key Idea: Search for trajectory profile that satisfies the coupled KKT conditions.
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Lagrangian:

min
𝜏𝑖

 𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖) Optimization Problem:

s. t.  ℎ𝑖 𝜏𝑖 , 𝜏¬𝑖 ≥ 0 

Solving Open-Loop Games as Mixed Complementarity Problems

Key Idea: Search for trajectory profile that satisfies the coupled KKT conditions.

ℒ𝑖 𝜏𝑖 , 𝜏¬𝑖 , 𝜆𝑖 = 𝐽𝑖 𝜏𝑖 , 𝜏¬𝑖 − 𝜆𝑖⊤ℎ𝑖 𝜏𝑖 , 𝜏¬𝑖

cost constraints



∀𝑖 ∈ 𝑁 = ൝
∇𝜏𝑖ℒ𝑖 = 0,

0 ≤ ℎ𝑖 ⊥ 𝜆𝑖 ≥ 0.

Coupled KKT system:

Player i Lagrangian:

Solving Open-Loop Games as Mixed Complementarity Problems

Key Idea: Search for trajectory profile that satisfies the coupled KKT conditions.

stacked for all players

ℒ𝑖 𝜏𝑖 , 𝜏¬𝑖 , 𝜆𝑖 = 𝐽𝑖 𝜏𝑖 , 𝜏¬𝑖 − 𝜆𝑖⊤ℎ𝑖 𝜏𝑖 , 𝜏¬𝑖



We can recognize the KKT system as a mixed complementarity problem (MCP≠MPC!)
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Given 𝐹: ℝ𝑑 ↦ ℝ𝑑; ℓ, 𝑢 ∈ ℝ𝑑; find 𝑧 ∈ ℝ𝑑  s. t.

General form:
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Given 𝐹: ℝ𝑑 ↦ ℝ𝑑; ℓ, 𝑢 ∈ ℝ𝑑; find 𝑧 ∈ ℝ𝑑  s. t.

⇔

𝑧𝑗 = ℓ𝑗 ,

ℓ𝑗 < 𝑧𝑗 < uj,

𝑧𝑗 = 𝑢𝑗,

𝐹𝑗 𝑧 ≥ 0, 𝑜𝑟 

𝐹𝑗 𝑧 = 0, 𝑜𝑟 

𝐹𝑗 𝑧 ≤ 0. 

General form:

𝐹 𝑧 ⊥ ℓ ≤ 𝑧 ≤ 𝑢
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We can recognize the KKT system as a mixed complementarity problem (MCP≠MPC!)

General form:

Coupled KKT system as MCP:

Given 𝐹: ℝ𝑑 ↦ ℝ𝑑; 𝑢, ℓ ∈ ℝ𝑑; find 𝑧 ∈ ℝ𝑑  s. t.

𝑧𝑗 = ℓ𝑗 ,

ℓ𝑗 < 𝑧𝑗 < uj,

𝑧𝑗 = 𝑢𝑗,

𝐹𝑗 𝑧 ≥ 0, 𝑜𝑟 

𝐹𝑗 𝑧 = 0, 𝑜𝑟 

𝐹𝑗 𝑧 ≤ 0. 

𝐹 𝑧 = ൠ
∇

𝜏𝑖ℒ𝑖

ℎ𝑖
∀𝑖 ,𝑧 = ቋ

𝜏𝑖

𝜆𝑖 ∀𝑖 , ℓ = ቅ
−∞

0
∀𝑖 , u = ቅ

∞

∞
∀𝑖 .
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We can recognize the KKT system as a mixed complementarity problem (MCP≠MPC!)

Given 𝐹: ℝ𝑑 ↦ ℝ𝑑; 𝑢, ℓ ∈ ℝ𝑑; find 𝑧 ∈ ℝ𝑑  s. t.
𝐹 𝑧 ⊥ ℓ ≤ 𝑧 ≤ 𝑢

Example: 5-player game, 25 time steps
3,208 decision variables, solution in 35 ms

If ∇𝐹 is smooth and is sparse, modern MCP solvers, e.g.  PATH*, can find solutions rapidly!

* [Dirkse 1995]

Solving Open-Loop Games as Mixed Complementarity Problems

𝐹 𝑧 = ൠ
∇

𝜏𝑖ℒ𝑖

ℎ𝑖
∀𝑖 ,𝑧 = ቋ

𝜏𝑖

𝜆𝑖 ∀𝑖 , ℓ = ቅ
−∞

0
∀𝑖 , u = ቅ

∞

∞
∀𝑖 .

Coupled KKT system as MCP:



Beyond Open-Loop Information Structure:

Feedback Games



Why Care About Feedback?

Open-loop games 
• Capture rich behavior, including collision avoidance etc.
• Receding-horizon takes care of prediction errors

But: Open-loop games cannot capture “indirect interaction”
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Feedback to the Rescue
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Feedback Nash EquilibriaGeneralized
Disclaimer: even a rigorous problem definition for feedback-GNE can be overwhelming. 

 

TL;DR: Feedback-GNE result in nested equilibrium problems! 
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∀𝑘 ∈ 𝑡, … , 𝑇 − 1 :

closed-loop dynamics under ( 𝛾i, 𝛾¬𝑖 ∗)
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generalized
constraints
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𝑢𝑡

𝑖 , if k = 𝑡

𝛾𝑖∗ 𝑥, 𝑘 , if k > t
where: 

𝑥𝑘+1 ≝ 𝑓𝑘 𝑥𝑘 , 𝛾𝑖 𝑥𝑘 , 𝑘 , 𝛾¬𝑖∗(𝑥𝑘 , 𝑘 )  

∀𝑘 ∈ 𝑡, … , 𝑇 − 1 :

s. t.

Challenge: 
Results in T-stage nested

equilibrium problem!

𝑢𝑡
𝑖  ∈  𝒦𝑡

𝑖 (𝑥𝑡 , 𝛾¬𝑖∗(𝑥𝑡 , 𝑡))

Feedback Nash EquilibriaGeneralized



arg min
𝑢𝑡

𝑖


𝑘∈{𝑡,…,𝑇}

𝐽𝑘
𝑖 𝑥𝑘 , 𝛾𝑖 𝑥𝑘 , 𝑘 , 𝛾¬𝑖∗ 𝑥𝑘 , 𝑘 + 𝐽𝑇

𝑖 (𝑥𝑇)𝛾𝑖∗ 𝑥𝑡 , 𝑡 = 𝑢𝑡
𝑖∗ ∈

Key idea: enforce that 𝛾∗ = 𝛾1∗, … , 𝛾N∗ ∈ Γ1 × ⋯ × Γ𝑁  also is an equilibrium for all sub-games!

𝛾𝑖 𝑥, 𝑘 ≝ ൝
𝑢𝑡

𝑖 , if k = 𝑡

𝛾𝑖∗ 𝑥, 𝑘 , if k > t
where: 

𝑥𝑘+1 ≝ 𝑓𝑘 𝑥𝑘 , 𝛾𝑖 𝑥𝑘 , 𝑘 , 𝛾¬𝑖∗(𝑥𝑘 , 𝑘 )  

∀𝑘 ∈ 𝑡, … , 𝑇 − 1 :

s. t.

Challenge: 
Results in T-stage nested

equilibrium problem!

Intractable!*

*Forrest Laine et al. 2023

𝑢𝑡
𝑖  ∈  𝒦𝑡

𝑖 (𝑥𝑡 , 𝛾¬𝑖∗(𝑥𝑡 , 𝑡))

Feedback Nash EquilibriaGeneralized



iLQGames Approximation of Feedback Nash Equilibria

Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.
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**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.
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Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory 𝑥𝑡+1 ← 𝑓𝑡(𝑥𝑡 , 𝛾1 𝑥𝑡 , 𝑡 , … , 𝛾𝑁 𝑥𝑡 , 𝑡 ), 𝑡 ∈ [𝑇]
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iLQGames Approximation of 
Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

Δ𝑥𝑡+1 ≈ 𝐴𝑡Δ𝑥𝑡 + 

𝑖∈[𝑁]

𝐵𝑡
iΔ𝑢𝑡

𝑖

From Taylor-series expansion:
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iLQGames Approximation of 
Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

From Taylor-series expansion:

quadraticize
costs

𝐽𝑡
𝑖 ≈ 𝑐 +

1

2
Δ𝑥𝑡

⊤𝑄𝑡Δ𝑥𝑡 +
1

2


𝑗∈ 𝑁

Δ𝑢𝑗⊤𝑅𝑡
𝑖𝑗

Δ𝑢𝑗 + Δ 𝑢𝑡
𝑖𝑗⊤

𝑟𝑡
𝑖𝑗

Feedback Nash Equilibria



iLQGames Approximation of 
Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

From coupled Riccati equations:

quadraticize
costs

Δ𝛾𝑖 Δ𝑥, 𝑡 ← 𝐾𝑡
𝑖𝛥𝑥 + 𝛼𝑡

𝑖 , ∀𝑖 ∈ [𝑁]solve
LQ-game

Feedback Nash Equilibria



iLQGames Approximation of 
Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

quadraticize
costs

solve
LQ-game

update
strategies

𝛾𝑖 ← stepWithLineSearch(𝛾𝑖 , Δ𝛾𝑖), ∀𝑖 ∈ [𝑁]

Feedback Nash Equilibria



iLQGames Approximation of 
Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

quadraticize
costs

solve
LQ-game

update
strategies

𝑥𝑡+1 ← 𝑓𝑡(𝑥𝑡 , 𝛾1 𝑥𝑡 , 𝑡 , … , 𝛾𝑁 𝑥𝑡 , 𝑡 ), 𝑡 ∈ [𝑇]
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Key idea: Feedback games with linear dynamic and quadratic costs (LQ-Games) have a closed-form solution!*

**D. Fridovich-Keil et al. "Efficient Iterative LQ Approximations for Nonlinear Multi-Player General-Sum Differential Games," 2020.

We can use these to iteratively  approximate feedback Nash solutions to non-LQ games!**

initial strategy

*Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. 1998.

get trajectory

linearize
dynamics

quadraticize
costs

solve
LQ-game

update
strategies

Until convergence!

iLQGames Approximation of Feedback Nash Equilibria



iLQGames | Final Remarks

initial strategy

get trajectory

linearize
dynamics

quadraticize
costs

solve
LQ-game

update
strategies

Limitations:
• Does not handle constraints (extensions exist* but are more complex)
• iLQGames solution is not an exact (local) feedback Nash:

• TL;DR: the solver ignores part of the nested policy gradient!*

*Forrest Laine et al. "The computation of approximate generalized feedback nash equilibria." 2023.
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Limitations:
• Does not handle constraints (extensions exist* but are more complex)
• iLQGames solution is not an exact (local) feedback Nash:

• TL;DR: the solver ignores part of the nested policy gradient!*

*Forrest Laine et al. "The computation of approximate generalized feedback nash equilibria." 2023.

In Practice:
• Captures characteristics of feedback Nash solutions well
• Good performance and fast convergence due to simultaneous updates!



iLQGames | Final Remarks

initial strategy

get trajectory

linearize
dynamics

quadraticize
costs

solve
LQ-game

update
strategies

Flexibility:
• Extends to other equilibrium concepts and information patterns:

• open-loop Nash
• feedback / open-loop Stackelberg equilibria

Limitations:
• Does not handle constraints (extensions exist* but are more complex)
• iLQGames solution is not an exact (local) feedback Nash:

• TL;DR: the solver ignores part of the nested policy gradient!*

*Forrest Laine et al. "The computation of approximate generalized feedback nash equilibria." 2023.

In Practice:
• Captures characteristics of feedback Nash solutions well
• Good performance and fast convergence due to simultaneous updates!



Beyond games with a complete model:

Contingency Games

Joint work with Andrea Bajcsy, Chih-Yuan Chiu, David Fridovich-Keil,
Forrest Laine, Laura Ferranti, Javier Alonso-Mora.







𝜏𝑖∗ ∈ arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖) 

s. t.  𝜏𝑖 ∈ 𝒦𝑖(𝜏¬𝑖)
𝑖 ∈ {𝐻, 𝑅}

Challenge: intents are not known a priori



𝜏𝑖∗ ∈ arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖; 𝜃) 

s. t.  𝜏𝑖 ∈ 𝒦𝑖(𝜏¬𝑖; 𝜃)
𝑖 ∈ {𝐻, 𝑅}

Maintain belief over intent parameters:

𝑏𝑡 𝜃 ≔ 𝑃(𝜃 ∣ 𝑧0:𝑡)
e.g., 
Particle Filter
UKF

Teaser: David Fridovich-Keil will show
          you how to do this in week 9!



Certainty-Equivalent

[Liu 2022, Mehr 2023, Schwarting 2019, Sadigh 2016]

𝜃 = arg max
𝜃∈Θ

𝑏(𝜃) 

𝜃 = right 𝜃 = left

𝑏
(𝜃

)
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𝜃 = right 𝜃 = left

𝑏
(𝜃

)

arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖; መ𝜃) 

s. t.  𝜏𝑖 ∈ 𝒦 𝑖(𝜏¬𝑖; መ𝜃)

መ𝜃 = right
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[Liu 2022, Mehr 2023, Schwarting 2019, Sadigh 2016]

𝜃 = right 𝜃 = left

𝑏
(𝜃

)

arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖; መ𝜃) 

s. t.  𝜏𝑖 ∈ 𝒦 𝑖(𝜏¬𝑖; መ𝜃)

መ𝜃 = right

Efficient solvers

Potentially unsafe

Certainty-Equivalent



arg min
𝜏𝑅

𝔼𝜃~𝑏 𝐽𝑅(𝜏𝑅 , 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝑅 ∈ 𝒦𝑅(𝜏𝜃
𝐻; 𝜃)

[Laine 2021, Le Cleac’h 2021]

arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖; መ𝜃) 

s. t.  𝜏𝑖 ∈ 𝒦 𝑖(𝜏¬𝑖; መ𝜃)

[Liu 2022, Mehr 2023, Schwarting 2019, Sadigh 2016]

Efficient solvers

Potentially unsafe

arg min
𝜏𝜃

𝐻
𝐽𝐻(𝜏𝜃

𝐻 , 𝜏𝜃
𝑅; 𝜃)

s. t.  𝜏𝜃
𝐻 ∈ 𝒦𝐻(𝜏𝜃

𝑅; 𝜃)

Robot

Human 
w/ intent 𝜃

Certainty-Equivalent Fixed Uncertainty



arg min
𝜏𝑅

𝔼𝜃~𝑏 𝐽𝑅(𝜏𝑅 , 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝑅 ∈ 𝒦𝑅(𝜏𝜃
𝐻; 𝜃)

Fixed Uncertainty

[Laine 2021]

arg min
𝜏𝑖

𝐽𝑖(𝜏𝑖 , 𝜏¬𝑖; መ𝜃) 

s. t.  𝜏𝑖 ∈ 𝒦 𝑖(𝜏¬𝑖; መ𝜃)

[Liu 2022, Mehr 2023, Schwarting 2019, Sadigh 2016]

𝜃 = right 𝜃 = left

𝑏
(𝜃

)

Efficient solvers

Potentially unsafe

Accounts for uncertainty

No future info gain; conservative!

𝜏𝑅∗

Certainty-Equivalent



Fixed Uncertainty

𝜃 = right 𝜃 = left

𝑏
(𝜃

)

Contingency Games

Bridge the gap by accounting for future information 
while preserving tractability 

Certainty-Equivalent



Contingency Games
plan with current uncertainty, 

but anticipate future certainty at 𝑡𝑏



𝜃 = right 𝜃 = left

𝑏
(𝜃

)

after 𝑡𝑏 separate plans conditioned on each outcome

𝑡𝑏

before 𝑡𝑏 : a single plan that considers all hypotheses

plan with current uncertainty, 

but anticipate future certainty at 𝑡𝑏

Contingency Games



𝜃 = right 𝜃 = left

𝑏
(𝜃

)

Contingency Games

arg min
𝜏Θ

𝑅
𝔼𝜃~𝑏 𝐽𝑅(𝜏𝜃

𝑅 , 𝜏𝜃
𝐻; 𝜃)Robot

Keeps separate plan for each 
of the |Θ| hypotheses 



Contingency Games

arg min
𝜏Θ

𝑅
𝔼𝜃~𝑏 𝐽𝑅(𝜏𝜃

𝑅 , 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝜃
𝑅 ∈ 𝒦𝑅(𝜏𝜃

𝐻; 𝜃)
Robot

𝜃 = right 𝜃 = left

𝑏
(𝜃

)



𝜃 = right 𝜃 = left

𝑏
(𝜃

)

Contingency Games

𝑡𝑏

arg min
𝜏Θ

𝑅
𝔼𝜃~𝑏 𝐽𝑅(𝜏𝜃

𝑅 , 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝜃
𝑅 ∈ 𝒦𝑅(𝜏𝜃

𝐻; 𝜃)
Robot

𝜏
𝜃𝑗
𝑅 𝑡 ≡ 𝜏

𝜃𝑘
𝑅 𝑡

∀ 𝑡, 𝜃𝑗 , 𝜃𝑘 ∈ ([0, 𝑡𝑏 ] × Θ2)

All plans must be consistent up to 𝑡𝑏



Contingency Games

𝑡𝑏

arg min
𝜏Θ

𝑅
𝔼𝜃~𝑏 𝐽𝑅(𝜏𝜃

𝑅, 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝜃
𝑅 ∈ 𝒦𝑅(𝜏𝜃

𝐻; 𝜃)Robot

𝜏
𝜃𝑗
𝑅 𝑡 ≡ 𝜏

𝜃𝑘
𝑅 𝑡 ∀ 𝑡, 𝜃𝑗, 𝜃𝑘 ∈ ([0, 𝑡𝑏 ] × Θ2)

arg min
𝜏𝜃

𝐻
𝐽𝐻(𝜏𝜃

𝐻 , 𝜏𝜃
𝑅; 𝜃)

s. t.  𝜏𝜃
𝐻 ∈ 𝒦𝐻(𝜏𝜃

𝑅; 𝜃)

Human 
w/ intent 𝜃 ∈ Θ

Left Right



Contingency Games

𝑡𝑏

arg min
𝜏Θ

𝑅
𝔼𝜃~𝑏 𝐽𝑅(𝜏𝜃

𝑅, 𝜏𝜃
𝐻; 𝜃)

s. t.  𝜏𝜃
𝑅 ∈ 𝒦𝑅(𝜏𝜃

𝐻; 𝜃)

𝜏
𝜃𝑗
𝑅 𝑡 ≡ 𝜏

𝜃𝑘
𝑅 𝑡 ∀ 𝑡, 𝜃𝑗, 𝜃𝑘 ∈ ([0, 𝑡𝑏 ] × Θ2)

arg min
𝜏𝜃

𝐻
𝐽𝐻(𝜏𝜃

𝐻 , 𝜏𝜃
𝑅; 𝜃)

s. t.  𝜏𝜃
𝐻 ∈ 𝒦𝐻(𝜏𝜃

𝑅; 𝜃)

Left Right

𝜏𝜃
𝐻∗ =

𝜏Θ
𝑅∗ =

∀𝜃 ∈ Θ



Demo

https://contingency-games-slides.web.app/17


Fixed UncertaintyCertainty-Equivalent

𝜃 = right 𝜃 = left

𝑏
(𝜃

)

Spectrum of Contingency Games

𝜃 = right 𝜃 = left

𝑏
(𝜃

)𝑡𝑏

𝑡𝑏    = 1 𝑡𝑏    = T

… …

𝑡𝑏

Branching Time (𝑡𝑏): known, tunable* parameter
*e.g., [Dvro 2021, Bajcsy 2021]



Receding-horizon online operation

By estimating the belief and branching time online,
we obtain an adaptive game-theoretic motion planner.



Key Result

Contingency games generate more efficient plans than 
fixed-uncertainty games at comparable levels of safety.𝜃 = right 𝜃 = left

𝑏
(𝜃

)𝑡𝑏

lasse-peters.net/pub/contingency-games
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Main Take-Aways

• Dynamic games capture interaction via coupled optimization

• Open-loop generalized Nash equilibrium problems can be solved with
Mixed-complementary solvers

• Feedback games result in nested equilibrium problems → hard to solve exactly

• iLQGames tractably approximate feedback Nash solutions and 
other equilibrium concepts (e.g. Stackelberg, open-loop Nash)

• Contingency Games efficiently capture uncertainty in games by modeling a 
future time at which uncertainty will resolve



Game-Theoretic Models
for Multi-Agent Interaction
Lasse Peters

Find game solvers, modeling infrastructure and more at

github.com/JuliaGameTheoreticPlanning
github.com/lassepe



A Naïve Formulation of Games over Feedback Strategies

As before, but now with decision variables in the space of time-varying feedback strategies: Γ𝑖 ∋ 𝛾𝑖: 𝒳 × [𝑇] → 𝒰𝑖

min
 𝛾𝑖∈Γ𝑖 

𝐽𝑖(𝛾𝑖 , 𝛾¬𝑖)

s. t. 𝛾𝑖 ∈ 𝒦𝑖(𝛾¬𝑖)
𝑖 ∈ 𝑁



Problem: solutions of this problem may not make use of feedback in a meaningful way!

Can show: original open-loop Nash solutions also satisfy this! 𝑥, 𝑡 ↦ 𝑢𝑡
𝑖 ∈ Γ𝑖
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Problem: solutions of this problem may not make use of feedback in a meaningful way!

Can show: original open-loop Nash solutions also satisfy this! 𝑥, 𝑡 ↦ 𝑢𝑡
𝑖 ∈ Γ𝑖

A Naïve Formulation of Games over Feedback Strategies

min
 𝛾𝑖∈Γ𝑖 

𝐽𝑖(𝛾𝑖 , 𝛾¬𝑖)

s. t. 𝛾𝑖 ∈ 𝒦𝑖(𝛾¬𝑖)
𝑖 ∈ 𝑁

As before, but now with decision variables in the space of time-varying feedback strategies: Γ𝑖 ∋ 𝛾𝑖: 𝒳 × [𝑇] → 𝒰𝑖



Qualitative Results

Baseline 1
Certainty-Equivalent

Contingency Games Baseline 2
Fixed Uncertainty



Solving Contingency Games

• Formulate KKT conditions
• KKT system is a mixed complementarity prob.
• Reformulate and use off-the-shelf solvers* 

• Find satisfying trajectories 𝜏Θ
𝑅∗, 𝜏𝜃1

𝐻∗, … , 𝜏
𝜃 Θ
𝐻∗

* [Dirkse 1995]

Example: 3-player game, 25 time steps, 2 hypotheses

3,208 decision variables, solution in 35 ms

𝜃 = right 𝜃 = left

𝑏
(𝜃

)𝑡𝑏



Quantitative Results

Jaywalking Overtaking
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