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Sequential decisionmaking is everywhere play games making life
decisions and its present in interaction In HRI sequentialdecision

making will form the mathematical backbone of how we model

people robots and their interaction
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AL outcomes of taking actions can sometimes be stochastic
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man for sequential decisionmaking in a

fullyobservable stochastic environment with a Markovian transition

model lets breakdown this model into the key ingredients

and modeling assumptions
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In the transition function is precisely where the Markov partof
Markov Decision Making Processes comes into play
Specifically the MarkovProperty states that thefuture is

independent of the past given the present

P future presentpast P future present
In MDPs this translates to the outcomeof actionsonly depending
on the current state and not a history
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r S IR is the rewardfnctiot.it called instantaneous

reward b c its only thinkingabout where you
are RIGHTNOW
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we have all these components of
what it means to make decisions

E but we need a way for our agent
to solve or knew what the

best decision is foranystatethey
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The object we seek to solve for is a policy

I S A is a mapping from states to actions
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Evaluate the quality of a policy it bythe expectedcumulative

reward induced bythe policy
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An optimal policy S A yieldsthehighestexpected
reward for all states
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Discount fantor describes the preference of an agent forcurrent
rewards over future one when 8 1 When 8 1 then

our agent wants the max rewardover all timesteps

discounting appears to be a goodmodel of human animal

preferences overtime

Ultimately we are searching for a policy S A that

maximizes the sumof discounted rewards

angmy 4 Frost
SttNPCS St T

MOREINFO

Artificial Intelligence A ModernApproach by Russel Norvig


