Last Time: Lecture 4 $\frac{1}{2}$ values $\frac{1}{2}$ Values $\frac{1}{2}$ HRI, Fall $\frac{29}{2}$ hands on exercise Andrea Bajcsy Today probleig Bayes' Kull

Uncertainty
30 far, we have assumed that we are certain about - for examplethe reward function that an agent is optimizing. In reality, when we interact with other people, or the world, we may not know what their raward is <u>ex</u> Et IIe Five which vehicle is the 7 for the mug? Of how close should the lets model this type of martainty + recap some basic pobability along the way. In probability theory, we want to make probabilistic assertions about possible "mortels" $Nortatron$ is probability of random variable \times $P(x)$ $e.g.$ P (cloudy), cloudy \in $\{ \text{true}, \text{false} \}$ P (x,y) is probability of X and y. Also called joint distribution e.g. Plaoudy, rain) $P(x|y)$ is probability of x given y. es_9 P cloudy $|rain\rangle$

TUSEFUL RULLES

 $P(x,y) = P(x|y)P(y)$ is called product rule or chain rule e.g. for it to be cloudy and rain (i.e. P (clandy, rain)).
We need it to rain (j.e. P (rain)) and we reed it to be cloudy given rain (i.e. P(clandy Irain)) $P(A | B, C, D) = P(A | B, C, D) P(B, C, D)$
= $P(A | B, C, D) \cdot P(C | C, D) P(C, D)$
= $P(A | B, C, D) \cdot P(C | C, D) P(C | D) P(D)$ \times $P(x) = \sum_{y \in Y} P(x, y)$ is marginalization (or "summing out")
yet sums up probabilities of each possible sums up probabilities of each possible
value of a forget variable (e.g. V), fall value of a target variable (e.g. y), taking P(cloudy, rain) PCcloudy) τ = τ rαin =F $clady = T$ $C.55$ $cloudy = T \t0.5\t0.05\t0.000
\ncloady = T \t0.15\t0.30\tPCcloudy) = \t0.45$ F, P (cloudy, rain)
raine {r, F } · independence is when one random variable's probability doesn't depend on the other $P(x,y) = P(x|y)P(y)$) if $x \neq y$ independent!
= $P(x)P(y)$ eg P (cloudy, heads) = P (cloudy) P (heads)</u> conditional independence: if x and y are conditionally independent $P(x,y | z) = P(x | z) P(y | z)$ \leftarrow if $x \notin y$ are $c.\pm$. <u>eg:</u> PC keys, wallet (drive) = P (keys I drive) P (wallet I drive)

BAYES ITTEDREITY goal eg. action eg. goal
(What if we know the probability of Algiurn (w) (P(x)w) What if we know the probablity of (x) given (y) (P(x)y)), but we wont to know probability of \overline{y} given \overline{x} (i.e. $P(y|x)$)... Bayes theorem lets us establish this relationship It underlies ^a lot of the mathematical humon models we will see in class. goal action $P(x|\psi)$ TCYIX $P(X)$ $Q:$ can you derive this with the rules we have seen so for? HNT ; stat from $P(x, y)$... $\underline{A}: P(x,y) = P(y|x) = P(y|x)P(x)$ ^H dividebyPEX $\frac{P(x,y)}{P(x)} = P(y|x)$ \implies $\frac{P(x|y)P(y)}{P(x)} = P(y|x)$ what we will see is that each component of Bayes' Theorem has a name (observation mode) likelihood function $\sqrt{P(y)}$ \mathfrak{t} $\frac{Y}{X}$ poster or 2 This rule helps us perform automatic inference over what humans wont!

 $P(goc2)$ $P(gocl \mid a = 1)$ $\frac{posterior}{1}$ <u> PrioC</u> $90 - 15$ $q_{o} = A$ $gocel = A \nvert gocel = B$ 0.33 0.66 0.5 0.5 \circ .8 $Consider $g \circ aC = A$$ $P(a=1|q=0=1) P(q=1=1)$ $P(gocleA(a=1))$ $\underbrace{P(a=1|a=0:1|R(a=1)+P(a=1|a=0:0)}_{0.5}$ $= 0.66$ $[Boffzmann$ Rational Model \rightarrow [Luce, 1959, 1977; Ziebart, 2010] Assume people optimize some reward function (e.g. goal location). This model says that people belowe approximately optimally (or) approximately rationally) in pursuit of their goals. $arcson(CT_1 \rightarrow v)(\infty)$ $=$ $e^{\sqrt{(s/a)}\sqrt{2}}$ netcized by $P(a|s)$ gral) $S_{\bar{a}\epsilon}^{\dagger}e^{\alpha(s_{1}\bar{a};\theta)}$ eg. in grid norid