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an academic figure for a computer vision research paper




an academic graph for a computer vision paper




an academic graph for a computer vision paper




scatterplot of sine wave ®




scatterplot of sine wave
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Default (GPT-3.5)

draw a plot of a sine wave




Default (GPT-3.5)

draw a plot of a sine wave

I'm a text-based Al and unable to create visual drawings or plots directly. However, | can
describe how to create a simple sine wave plot using Python and the popular matplotlib

library. You can run this code in a Python environment to generate a sine wave plot:

python D Copy code

import numpy as np

import matplotlib.pyplot as plt

Plot of a Sine Wave

—— y =sin(x)

* np.sin(frequency * t)

))

label="'Sine Wave')



ChatGPT

draw a figure that could be at the top of a computer
vision research paper




ChatGPT

draw a figure that could be at the top of a computer
vision research paper

Certainly! For a computer vision research paper, the top figure often highlights
the core concept or architecture of the proposed method. Let's create a simple
conceptual diagram of an object detection pipeline. This could show how an
image is processed through a convolutional neural network (CNN) to produce
bounding boxes and class labels.

Here's a basic example of such a diagram:

python (§ Copy code

matplotlib. pyplot

plt

matplotlib.patches Rectangle

# Create a new figure

fig, ax = plt.subplots({figsize=(10, 4))

# Draw the image block

ax.add_patch{Rectangle(( 0 Yy , edgecolor= .

plt.text( . 5 , ha= , va= , fonts

# Draw the CNN block
ax.add_patch(Rectangle(( - ), ’ , edgecolor= ,
plt.text( , ’ , ha= , va= , fontsize=17,

from Input Image to CNN

- 5 , U, bead width= , head_length= c
Feature

Input Image Maps

block

ChatGPT

ChatGPT can make mi Check important info.



Instead of hoping to auto-generate our academic figures...
... let’s talk about the process of designing them



Claim:

The process of graphic design is a
multi-objective optimal control problem

1.e. sequential decision-making problem!



The process of graphic design is a
multi-objective optimal control problem

Thinking of it this way:

. Reduction to a known problem: Makes the daunting
challenge of design more “tamiliar”

. Reward design: Lets us think about what objectives we
seek to optimize with our designs

. Approximations: Lets us derive practical design heuristics



Formalizing the Graphic Design Process
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(the designer)
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You
(the designer)
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You
(the designer)

state X the design you see

control u € {chang €font, changecoior,

addine, Addext, -

dynamics Xt+1 = f(xt, ut)

-}

yaxis

~C

g

Xaxis

ut = change oior

yaxis

-
o

t+1



mMax
uOT

e

sequence of design
decisions

You
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Information density
of final design
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Information density

of final design

: Engineers typically don’t
) have trouble with this ©
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Viewer's cognitive load when
parsing the final design

max Info(x!) — ViewerEffort(x!)

uOT
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yaxis
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You
(the designer) The viewer



Viewer's cognitive load when
parsing the final design

max Info(x!) — ViewerEffort(x!)
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Viewer's cognitive load when
parsing the final design

max Info(x!) — ViewerEffort(x!)
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Viewer's cognitive load when
parsing the final design

max Info(x!) — ViewerEffort(x!)
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You Line colors blend together Hard to read font, line

(the designer) color and pattern

The viewer



Figures from academic papers...
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Fig.12 Scatter plots and regression curves for explicit feedback recommender response to individual users.
Points are observed y/n proportions; curves are regression lines transformed from log-odds to proportions.
Rug plots show marginal distributions
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Figures from ICRA 2022
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Fig. 1. Mlustrative scheme of the proposed HRC-MPC planner.

Optimized figures from ICRA 2022

Vision system High-level planner

A
Xobs» Xobs . S
dad>9a
K =
_ f

SoT | F

: Vi)
S 5
= £
é‘é % Robot constraints . .
— q q q

v v v

Robot Controller

Easier to read font Color highlights the main contribution
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Optimized figures from ICRA 2022

: &1 2 3 4
Single [v@ | 5 3 il : — .
Agent {:-;“ . . ! X X o time
s é é
Wy 4 47 g @& & @1 4 79
Multi ? 2) 6 10 an an : I I I I -
Agent< t%“ ! I X X Y;g:. 12 .6 1,0 R
1 18 | . & 3 5 8
N 5 Time | @, | : :
= = time
(a) Multi-Agent Active search (b) Single vs. Multi (a) Multi-Agent Active search (b) Single vs. Multi
No unnecessary background Color has meaning (agent identity)

Remove unnecessary words



How do we design this reward function?

max Info (x!) — ViewerEffort(x")
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You
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Relationship between Info and ViewerEffort

max Info(x!) — ViewerEffort(x")
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max Info(x!) — ViewerEffort(x")
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This 1s a sequential decision-making problem @ @
(i.e., optimal control problem)!
max Info(x!) — ViewerEffort(x")

uOT

s.t. xtt = f(xt,utb)

0 _
X~ = Xplank

But, challenging because design space is huge. ..



Tractable Approximations



Dimensionality Reduction

Reduce the size of the design “state” space

max Info( Y — ViewerEffort(x!)
.0
s.t. xtt = f(xt,utb)

0 _
X~ = Xplank



Dimensionality Reduction

max Info (x") — ViewerEffort(x")
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Dimensionality Reduction
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Fig. 1. Illustrative scheme of the proposed HRC-MPC planner.
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Consider only the “primitives” of the design



Dimensionality Reduction

max Info(E(x")) — ViewerEffort(E(x1))

uOT

e

Change color

Change position or scale

Change shape

[t’s easier to reason about how “actions” influence the design



max Info
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/‘ Instruction Relevance with LLMs

How would you put
an apple on the
table?

| would: 1 -

LLM

Dimensionality Reduction

(E(xT)) — ViewerEffort(E(x1))

| would: 1. Find an apple, 2.

Combined

Find an apple
Find a coke
Find a sponge
Pick up the apple
Pick up the coke

Place the apple
Place the coke
Go to the table

Go to the counter

Skill Affordances with Value Functions

0.6
0.6
0.6
0.2
0.2

0.1
0.1
0.8
0.8

Value
Functions

»O— LLM <

= il

Figure 3: Given a high-level
instruction, SayCan combines
probabilities from a LLM (the
probability that a skill is useful
for the instruction) with the prob-
abilities from a value function
(the probability of successfully
executing said skill) to select the
skill to perform. This emits a
skill that is both possible and
useful. The process is repeated
by appending the skill to the re-
sponse and querying the models
again, until the output step is to
terminate. Appendix Figures 12
and 2 focus on the LLM and VFS
components.



Dimensionality Reduction

max Info(E(x")) — ViewerEffort(€(x))

uOT
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Dimensionality Reduction

max Info(E(x")) — ViewerEffort(€(x"))

uOT




Dimensionality Reduction

max Info(E(x")) — ViewerEffort(€(x"))

uOT

Use color to connect inner and outer components

______________________

{ Output of model
‘ ' is highlighted

Use “feedback” arrows to show the repetition
instead of repeating the graphic



Minimize Control Effort
...by sketching before generating final figures

max Info (x!) — ViewerEffort(x")
.0
s.t. xtt = f(xt,utb)

0 _
X~ = Xplank



Minimize Control Effort
...by sketching before programmatically generating figures
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Sketch

Final Design

Minimize Control Effort

...by sketching before running expensive experiments

Increased
uncertainty

Robot waits
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Minimize Control Effort

...by sketching before running expensive experiments
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Minimize Control Effort

..by sketching before running final simulations
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Minimize Control Effort
...by sketching before making final figures in PPT
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Greedy Approximation
Plan for greedily for one-step, and replan

max Info (x1) — ViewerEffort(x1)
u
s.t. x1 = f(x° u"

0 _
X~ = Xinit



When designing, “simulate” an action and compare
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Visualizing Space & Time




Visualizing Space & Time

...by using screenshot overlays




pursuer

Visualizing Space & Time

...by using screenshot overlays
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Visualizing Space & Time

...by using transparency

1
g
¥

) €y 0‘

contace

Safe sze
con
0% i

switch




Visualizing Space & Time

...by using colored trajectory overlays




Visualizing “human-centric” Data

... by using common iconography

Language Feedback

Sent at 12:04

Avoid the area
surrounded by

caution tape

Sent at 12:05

Avoid the coffee
spill

Mullen, James F., et al. "Communicating inferred goals with passive augmented
reality and active haptic feedback." RA-L. (2021)

Bobu, A, et al. "Sirl: similarity-based
implicit representation learning." HRI 2023.



A Simple Example & Numerical Solution



“primitives” —\/\
e, € {0,1}

e, € {0,1} ep € {0,1} 01
ex € {0.1) s € 19,0} s € {9,0) gria € {01}
Pa € {———} pg € {———}
Sy € {0,1} Sp € {0,1}
State X = [ey, €y,€4,C4)Pa»Sar€B,CB,PB)SB» egrid]
control u € {[1,0,0,0,0,0,0,0,0,0,0], ...[0,0,0,0,0,0,0,0,0,0,1]}
dynamics flo,u)=((x+u) %2
objective Info(x) = ||?C||2
+10 ife; =0,i € {x,y,A, B}
ViewerEffort(x) = —10 ife; =1
—|les — cgl |2
|Ipa — PB”Z
|Is4 — SB||2

max Info(x1) — ViewerEffort(x?1) e
u
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[87] 42 return r_info(x) - r_viewer effort(x)

zeros(len(x)))
n range{len( -
.zeros(len(x) y .
S The Optimal Design!
action_list.append(u)
return action list

dynamics(x,
¥next = X + u
return xnext % 2

optimal_designer(x@&, T):

)
if r > reward(dynamics(x,uopt)):
uopt = u

¥ = dynamics(x,uopt)
xtraj.append(x]

return xtraj




The Optimal Design Trajectory: Info(x") —ViewerEffort(x")
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Front Figures



max Info (x1) — ViewerEffort(x1)
u

s.t. x1 = f(x° u"



Communicate your contribution.
Show what makes your work “impactful”?

max Info(x") — ViewerEffort(x")+ Impact(x?)
u
s. t. x1 = f(x% u’
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Peter Mitrano
University of Michigan
Email: pmitrano@umich.edu

Abstract—The success of deep learning depends heavily on
the availability of large datasets, but in robotic manipulation
there are many learning problems for which such datasets do not
exist. Collecting these datasets is time-consuming and expensive,
and therefore learning from small datasets is an important open
problem. Within computer vision, a common approach to a lack
of data is data augmentation. Data augmentation is the process of
creating additional training examples by modifying existing ones.
However, because the types of tasks and data differ, the methods
used in computer vision cannot be easily adapted to manipulation.
Therefore, we propose a data augmentation method for robotic
manipulation. We argue that augmentations should be valid,
relevant, and diverse. We use these principles to formalize
augmentation as an optimization problem, with the objective
function derived from physics and knowledge of the manipulation
domain. This method applies rigid body transformations to
trajectories of geometric state and action data. We test our
method in two scenarios: 1) learning the dynamics of planar
pushing of rigid cylinders, and 2) learning a constraint checker
for rope manipulation. These two scenarios have different data
and label types, yet in both scenarios, training on our augmented
data significantly improves performance on downstream tasks.
We also show how our augmentation method can be used on

‘ata to enable more data-efficient online learning.

Paper from RSS 2022

[. INTRODUCTION

Dmitry Berenson
University of Michigan
Email: dmitryb@umich.edu

Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it
to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

model [19, 15, 2]. This approach assumes a useful generative



Data Augmentation

Peter Mitrano
University of Michigan
Email: pmitrano@umich.edu

Abstract—The success of deep learning depends heavily on
the availability of large datasets, but in robotic manipulation
there are many learning problems for which such datasets do not
exist. Collecting these datasets is time-consuming and expensive,
and therefore learning from small datasets is an important open
problem. Within computer vision, a common approach to a lack

of data is data augmentation. Data augmentation is the process of

creating additional training examples by modifying existing ones.
However, because the types of tasks and data differ, the methods
used in computer vision cannot be easily adapted to manipulation.
Therefore, we propose a data augmentation method for robotic
manipulation. We argue that augmentations should be valid,
relevant, and diverse. We use these principles to formalize
augmentation as an optimization problem, with the objective
function derived from physics and knowledge of the manipulation
domain. This method applies rigid body transformations to
trajectories of geometric state and action data. We test our
method in two scenarios: 1) learning the dynamics of planar
pushing of rigid cylinders, and 2) learning a constraint checker
for rope manipulation. These two scenarios have different data
and label types, yet in both scenarios, training on our augmented
data significantly improves performance on downstream tasks.
We also show how our augmentation method can be used on
real-robot data to enable more data-efficient online learning.

[. INTRODUCTION

for Manipulation

Dmitry Berenson
University of Michigan
Email: dmitryb@umich.edu

Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it

to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

model [19, 15, 2]. This approach assumes a useful generative
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Data Augmentation for Manipulation

Peter Mitrano
University of Michigan
Email: pmitrano@umich.edu

Abstract—The success of deep learning depends heavily on
the availability of large datasets, but in robotic manipulation
there are many learning problems for which such datasets do not
exist. Collecting these datasets is time-consuming and expensive,

and therefore learning from small datasets is an important open

problem. Within computer vision, a common approach to a lack
of data is data augmentation. Data augmentation is the process of
creating additional training examples by modifying existing ones.
However, because the types of tasks and data differ, the methods
used in computer vision cannot be easily adapted to manipulation.
Therefore, we propose a data augmentation method for robotic
manipulation. We argue that augmentations should be valid,
relevant, and diverse. We use these principles to formalize
augmentation as an optimization problem, with the objective
function derived from physics and knowledge of the manipulation
domain. This method applies rigid body transformations to
trajectories of geometric state and action data. We test our
method in two scenarios: 1) learning the dynamics of planar
pushing of rigid cylinders, and 2) learning a constraint checker
for rope manipulation. These two scenarios have different data
and label types, yet in both scenarios, training on our augmented
data significantly improves performance on downstream tasks.
We also show how our augmentation method can be used on
real-robot data to enable more data-efficient online learning.

[. INTRODUCTION

Dmitry Berenson
University of Michigan
Email: dmitryb@umich.edu

Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it
to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

model [19, 15, 2]. This approach assumes a useful generative
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Data Augmentation for Manipulation

Peter Mitrano
University of Michigan
Email: pmitrano@umich.edu

Abstract—The success of deep learning depends heavily on
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pushing of rigid cylinders, and 2) learning a constraint checker
for rope manipulation. These two scenarios have different data
and label types, yet in both scenarios, training on our augmented
data significantly improves performance on downstream tasks.
We also show how our augmentation method can be used on
real-robot data to enable more data-efficient online learning.

[. INTRODUCTION
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University of Michigan
Email: dmitryb@umich.edu

Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it
to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

model [19, 15, 2]. This approach assumes a useful generative
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University of Michigan
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Abstract—The success of deep learning depends heavily on
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ithin computer vision, a common approach to a lack
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itional training examples by modifying existing ones.
cause the types of tasks and data differ, the methods
puter vision cannot be easily adapted to manipulation.
e propose a data augmentation method for robotic
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Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it
to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

model [19, 15, 2]. This approach assumes a useful generative
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h real-world experiments. The experiments are
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[. INTRODUCTION

invention, pneumatic artificial muscles (PAMs)

mave—ocer—widely used for various tasks, such as aerospace
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. 32], medical applications, [26, 22], and indus-
s, [11, 31]. Due to their high power-to-weight
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Fig. 1: The figure shows the structure of the robot arm. It has
four rotational joints, and each joint is actuated by a pair of
PAMs. For simplicity we consider only the first three degrees
of freedom in this article. Note that DoF stands for degree of
freedom.
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cally design and verify autonomous systems, espe-
ex robotic systems involving perception, planning,
| hardware in the autonomy stack. Differentiable
g has recently emerged as powerful tool for modeling
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able end-to-end design optimization. In this paper,
gap by combining differentiable programming for
optimization with a novel statistical framework for
je robustness of optimized designs. Our framework
end-to-end optimization and robustness certification

/systems, enabling simultaneous optimization of nav-

igation, perception, planning, control, and hardware subsystems.
Using simulation and hardware experiments, we show how our
tool can be used to solve practical problems in robotics. First, we
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Fig. 1: An overview of our framework for robot design opti-
mization and certification. Differentiable programming allows
the user to flexibly specify a robot design problem, which
can be efficiently optimized using exact gradients and verified
using an extreme value statistical analysis.
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Abstract

Graphic design challenges are ubiquitous in scientific work: with every new paper
researchers must visualize complex data, create technical diagrams, and generate
visual aids for talks. Although generative models are revolutionizing the creation
of images, technical designs like those mentioned above are still something that
experts must create manually. Instead of hoping that scientific figures will emerge
from web-trained generative Al, this paper seeks to understand the fundamental
process behind scientific graphic design. Specifically, we formalize the graphic
design process as a multi-objective terminal-cost optimal control problem, trading
off information density and viewer effort of the final design. We also present
approximation techniques for solving the generally intractable optimal graphic
design problem, such as dimensionality reduction, a new algorithm called iterative
linearized graphic design (1ILGD), and greedy strategies. With this formalism and
approximations in hand, we present several exciting frontiers related to preference-
based reward learning and generative model alignment with graphic designer
behavior.

1 Introduction

Modern scientific research increasingly relies on visuals to communicate complex technical results
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