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Research Skills
Technical Writing



You have been doing research, you’ve been 
generating results, its time to write it up! 



Open up Overleaf…

…create a new paper document



More realistically….

How do you start?



Order in which I write sections:

(1) →

(2) →

(3) →

(4) →

(6) →

(5) →

Why? 
• Most concrete to most abstract
• Experimental results govern the 

story I can tell from the start



Ok but how do you 
really start?



Analogy

coarse fine

Don’t get bogged down by the details



Work Coarse to Fine-Grained

coarse fine

?



Work Coarse to Fine-Grained

coarse fine



Coarse: Minimum Necessary Sketch

If you removed even one of these lines, 
the sketch wouldn’t make sense! Same goes for our next level of writing



Coarse: Minimum Necessary Sketch



Coarse: Minimum Necessary Sketch



Work Coarse to Fine-Grained

coarse fine



Finer: Flesh Out the Paper

Only after the sketch, are we ready to 
flesh out the sculpture’s key features

This carving on the left is already 
looking like a sculpture!

Similarly, this is already 
looking like a paper!



Finer: Flesh Out the Paper

This is a good time to add in results

Good time to convert bullet pts into sentences



Finer: Flesh Out the Paper

This is the right stage to think:

• What additional results / visuals would help me 
make my claims clearer?

• Do I need to revisit the way I chose to organize my 
content and arguments?



Work Coarse to Fine-Grained

coarse fine



Fine-Grained

You could stop at the sculpture 
before…but you want to go to the next 
level! Time to do fine-grained details

Let’s take a look at some fine-grained details…



Fine-GrainedFiner



Fine-GrainedFiner

Better rendering Text annotations

Color coding Additional (bottom) plot 
to emphasize key aspect



Fine-GrainedFiner

Experiment with best type of visualization 
to make your narrative point



Fine-GrainedFiner

Tighten the language – get to the point! Clarify our experimental approach



Work Coarse to Fine-Grained

coarse fine



Why does working “Coarse to Fine-Grained” help?



Clear thinking!



Theorem. Clear thinking == Clear writing.



Proof.  William Zinsser, W., 1980. Simplicity. In “On 
Writing Well: An Informal Guide to Writing Nonfiction.”

Theorem. Clear thinking == Clear writing.

https://www.geo.umass.edu/faculty/wclement/Writing/zinsser.html


Now: Reading ☺

Theorem. Clear thinking == Clear writing.

Proof.  William Zinsser, W., 1980. Simplicity. In “On 
Writing Well: An Informal Guide to Writing Nonfiction.”



Clear thinking is particularly helpful when 
it comes to the abstract and introductions

These sections require the most “distillation” of your key ideas

Reviewers will often decide at a “gut level” if a paper 
should be accepted or rejected based on the introduction!



Abstract



Example (ICRA 2025 Submission)



Today, the majority of safe control approaches are for robots
acting in isolation or assume that human behavior will stay the
same over time. However, for some human-robot interactions,
like collaborative manipulation, the human’s behavior can be
influenced depending on what the robot does (e.g., picking an
alternative block). If we do not properly account for this
influence within our safe control synthesis, the model mismatch
will lead to conservative robot behavior at best and unsafe
behavior at worst. In this work, we treat the human’s internal
intent (e.g., desired block to pick) as a virtual state which evolves
over time as a function of the past human-robot interaction
history. By augmenting the robot’s state space with the time-
varying human intent, we can solve a robust safety game that
enables the robot to anticipate how present actions will influence
the human to change their goal and, in turn, bring the human-
robot team closer to an unsafe state. We instantiate this idea in a
close-proximity tabletop manipulation task where the human
and robot have to efficiently grab blocks and sort them without
colliding into each other, but who grabs which block can be
influenced by the other agent. By using a learned model of how
the human collaborator’s goal can change over time within our
safety analysis framework, the robotic arm is less conservative
while still ensuring a high safety rate during task execution.

Initial Abstract

Question: What’s good?

Tells us about an assumption

Tells us what goes wrong under assumption

Describes takeaways



Today, the majority of safe control approaches are for robots
acting in isolation or assume that human behavior will stay the
same over time. However, for some human-robot interactions,
like collaborative manipulation, the human’s behavior can be
influenced depending on what the robot does (e.g., picking an
alternative block). If we do not properly account for this
influence within our safe control synthesis, the model mismatch
will lead to conservative robot behavior at best and unsafe
behavior at worst. In this work, we treat the human’s internal
intent (e.g., desired block to pick) as a virtual state which evolves
over time as a function of the past human-robot interaction
history. By augmenting the robot’s state space with the time-
varying human intent, we can solve a robust safety game that
enables the robot to anticipate how present actions will influence
the human to change their goal and, in turn, bring the human-
robot team closer to an unsafe state. We instantiate this idea in a
close-proximity tabletop manipulation task where the human
and robot have to efficiently grab blocks and sort them without
colliding into each other, but who grabs which block can be
influenced by the other agent. By using a learned model of how
the human collaborator’s goal can change over time within our
safety analysis framework, the robotic arm is less conservative
while still ensuring a high safety rate during task execution.

Question: What’s wrong?

Have to read ½ way to learn what we did!

What is this improvement relative to?

How did we solve this robust safety game?

Contribution isn’t the clearest

Initial Abstract



Today, the majority of safe control approaches are for robots
acting in isolation or assume that human behavior will stay the
same over time. However, for some human-robot interactions,
like collaborative manipulation, the human’s behavior can be
influenced depending on what the robot does (e.g., picking an
alternative block). If we do not properly account for this
influence within our safe control synthesis, the model mismatch
will lead to conservative robot behavior at best and unsafe
behavior at worst. In this work, we treat the human’s internal
intent (e.g., desired block to pick) as a virtual state which evolves
over time as a function of the past human-robot interaction
history. By augmenting the robot’s state space with the time-
varying human intent, we can solve a robust safety game that
enables the robot to anticipate how present actions will influence
the human to change their goal and, in turn, bring the human-
robot team closer to an unsafe state. We instantiate this idea in a
close-proximity tabletop manipulation task where the human
and robot have to efficiently grab blocks and sort them without
colliding into each other, but who grabs which block can be
influenced by the other agent. By using a learned model of how
the human collaborator’s goal can change over time within our
safety analysis framework, the robotic arm is less conservative
while still ensuring a high safety rate during task execution.

Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Initial Abstract Final Abstract



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap

Key contribution stated up-front



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap

Key contribution stated up-front

Two aspects of contributions highlighted



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap

Key contribution stated up-front

Two aspects of contributions highlighted

How we accomplish / test our idea



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap

Key contribution stated up-front

Two aspects of contributions highlighted

How we accomplish / test our idea

What we compare to



Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.

Final Abstract

Tells us the problem setting & gap

Key contribution stated up-front

Two aspects of contributions highlighted

How we accomplish / test our idea

What we compare to

Takeaways from empirical results



Exercise: 
• I will show you an introduction. 
• You write the abstract. 
• In groups of 2-3, bullet point the minimum necessary 

logical arguments for your abstract.
• Share with the class.













Related 
Work



Related works are not:

lists

every single paper you came across during research

disconnected from the other sections

descriptions of where we “are” in a field

opportunities to highlight open gaps your work solves

relevant to the key “dimensions” of your work

Related works are:



Sections highlight the key 
“dimensions”

End of each section 
highlights what is new 

about our approach from 
this “dimension”

Content describes 
foundational work as 

well as recent work 
that is most relevant



Method



Example 1
(algorithmic contribution)



Example 2

https://umi-gripper.github.io/umi.pdf

(system contribution)



Experiments



Example 1
(user study)

Sections highlight the key things I 
need to know about a study



Example 1
(simulation results)

Sections correlate with essential 
information I need to parse results



Example 1
(simulation results)

Takeaway blocks let the reader 
skim the experimental results 

in a very intuitive way



It turns out all these concepts also apply to 
brainstorming & pitching research ideas!



For example, when I think of project directions, I write down a “mock abstract”

that concisely states:

• (1 sentence) What is the broad challenge
• (1-2 sentence) What is the research gap
• (1-2 sentence) Key idea of the proposed work
• (1 sentence) What is the outcome if I’m successful?



For example, when I think of project directions, I write down a “mock abstract”

Initial Project Document Final Paper



Initial Project Document Final Paper



Most common failure modes:

1) failure to distill key idea
2) poor argument structure

writer 
(i.e., you)



Most common failure modes:

1) failure to distill key idea
2) poor argument structure

writer 
(i.e., you)

reader 
(i.e., Reviewer 2)

What is the contribution?

Why is this new?

Why did you try X and 
not Y?



More resources



https://www.youtube.com/watch?v=imEtTnQKt4M
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Research Skills
Technical writing

Clear writing is 
clear thinking. 

Work coarse to 
fine-grained when 
writing papers. 
You are a 
sculptor! 

- Distill + emphasize 
key ideas and 
logical arguments.

- Make it easy for 
reader to pay 
attention to the 
right stuff
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