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II. RELATED WORK
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tortor sed dum, erat ligula aliquet magna, vitae

ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis,
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Most concrete to most abstract
Experimental results govern the
story I can tell from the start
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1. INTRODUCTION
11. RELATED WORK
111, METHOD
1V. EXPERIMENTS

Task: Tabletop Object Reaching.

« Human and robot arm need to reach
on the table, but they do not know who is going for what
object.

« They must choose objects without colliding into each
other.

« We consider four objects, two mugs and two bottles.

Methods.
« We want to study how safe but also efficient our method
is, 50 we choose two baselines at cither extreme.
« We compare our approach (called Ours) 10 a pessimistic
model (called Robust), an optimistic model (called No-
Safety).

Metrics.

« For trajectory prediction models, we measure the aver-
age displacement error (ADE), final displacement error
(FDE).

« For closed-loop simulations of the agents, we meast
collision rate 2) task completion rate and 3) compl
time (average trajectory length).

A. Influence-Aware vs. Influence-Unaware Safety

« We first study the performance of our approach, which
safely exploits influence, compared to prior safety meth-
ods.

Same goes for our next level of writing

show a bar chart of completion times
Results: Qualitative.
o TODO: show how the robot adapts to the human over
time via screenshots overlaid on top of each other
« We show rollouts of our method vs. the Robust baseline
and explain why the robot is more efficient.
B. Ablation: When Does Modeling Influence Matter?
« Next, we study when it matiers that we use influence-
aware human models for safe robot decision-making.
Approach.
« We ablate the robot’s prediction model to be conditional
vs. unconditional
« Both are trained on the same data and evaluated on 100
held-out trajectories.
« We also split the data into highly interactive and non-
interactive trajectories.
Open-Loop Results: Quantitative & Qualitative.
Closed-Loop Results: Quantitative & Qualitative.

C. How Robust Are We to Qut-of-Distribution Humans?
Approach.

Results: Quantitative.

Results: Qualitative.

V. CONCLUSION & DISCUSSION
REFERENCES



Coarse: Minimum Necessary Sketch

IV. EXPERIMENTS

Task: Tabletop Object Reaching.

o Human and robot arm need to reach their desired objects
on the table, but they do not know who is going for what
object.

» They must choose objects without colliding into each
other.

« We consider four objects, two mugs and two bottles.

Methods.

« We want to study how safe but also efficient our method
is, so we choose two baselines at either extreme.

» We compare our approach (called Ours) to a pessimistic
model (called Robust), an optimistic model (called No-
Safety).

Metrics.

« For trajectory prediction models, we measure the aver-
age displacement error (ADE), final displacement error
(FDE).

«» For closed-loop simulations of the agents, we measure: 1)
collision rate 2) task completion rate and 3) completion
time (average trajectory length).

A. Influence-Aware vs. Influence-Unaware Safety

« We first study the performance of our approach, which
safely exploits influence, compared to prior safety meth-
ods.



Coarse: Minimum Necessary Sketch

Results: Quantitative. TODO: insert a table with metrics,
show a bar chart of completion times

Results: Qualitative.
« TODO: show how the robot adapts to the human over
time via screenshots overlaid on top of each other
« We show rollouts of our method vs. the Robust baseline
and explain why the robot is more efficient.

B. Ablation: When Does Modeling Influence Matter?

« Next, we study when it matters that we use influence-
aware human models for safe robot decision-making.

Approach.

« We ablate the robot’s prediction model to be conditional
vs. unconditional

« Both are trained on the same data and evaluated on 100
held-out trajectories.

« We also split the data into highly interactive and non-
interactive trajectories.

Open-Loop Results: Quantitative & Qualitative.
Closed-Loop Results: Quantitative & Qualitative.

C. How Robust Are We to Out-of-Distribution Humans?
Approach.

Results: Quantitative.

Results: Qualitative.

V. CONCLUSION & DISCUSSION
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Only after the sketch, are we ready to
flesh out the sculpture’s key features

Finer: Flesh Out the Paper

This carving on the left is already
looking like a sculpture!

SLICE (Ours)

3
2
B

=

Robust-RA

=005

1.2s T

— Rabot (ego)
— Human (oppenent)
- Predictions

3s t=405 1=635

2: Rollout of the three reach-avaid policics on the sams nitial conditon. SLICE confidcatly understands that the buman will be inflocnscd (o move: out

of s way as it chooses the top goal and reaches the Fastest, Marginal-RA eventually sces that the haman
human is

aches mest, The Robust-RA. policy
lors af robots ascordingly, make rubots thicke
les, make goals bigger and more distine

color, remave red 3 {unused buman goal), mark human's goal mare prominently]

(AB: metrics from above; maybe report in a bar chart?)

Results: Qualitative. : separate figure or is Fig. [
sufficient? maybe plot ane where robust actually times
out?] To understand why the robust controller results in slower
najectoties, we can look at Fig. [3] The robust controller
initially keeps the robot arm far away from all goals as the
human agent is moving towards its own goal. The robot
then accidentally changes the human’s goal and thus necds to
continue avoiding the human before finally reaching its own
goal al ¢ = 6.3s. In contrast, the SLICE controller immediately
recognizes that it can move elose to its desired goal because
it sccurately predicts that the human will change its goal and
move out of the way—thus staying both safe and

B. Ablation; When Does Modeling Influence Matter?

Here, ask the question: when docs it matter that we inject
an influence-aware model into the reach-avoid policy? We
assume the human agent plays according to the gencrated data.
distribution, but now try (o understand the effect of choosing.
a conditional prediction model instead of a marginal one (i.c.
one that does not condition on the robot's future plan). We
compare both the performance of the predictors themselves.

flect on the lici

and the d reach-avoid
T A8 Do (1050) || e Do (3657 e st Do 113857
Margoat | oom 013, oo 0t
cur 01 007 0 00w e

TABLE Il: Average and Final Displacement Esror of Marginal and CBP
predictors reporied as: ADE (FDE).

T A0 Do (10001 ] B B 337 o i Do (11365

T e TEE
127, 120) )

TABLE Il Aversge inferrod contel boend size from marginal pecdictoc
[t | w80 CBP precictor Ly (e . Table eates are hown pes comol
inpet dimeasion and the maxiowam dynamsally fessibl range i 0.

Open-Loop Results: Quantitative. The ADE is measured
as the average L2 distance of the predicted end-effector
position from the first imestep of the prediction horizon vs
the true end-effector position. The FDE is measured as the
L2 distance between the end-effector position predicted for
the final timestep of the prediction horizon vs the e end
effector position at the corresponding timestep. We test the
predictors on a dataset of 100 held-out trajectories (generated
in the same manner described in Sec. [V), each 15 seconds
long. This results in 14,000 data point{’, and as scen in Table

the error rates look very similar, with the CBP modcl doing
slightly better,

However, we know that highly interactive scenarios. are
long-til events [9], so we decompose the datasets into data
points where influence is happening D (2457 data points) and
those where it is not D-r (11,543 data points). This is done
by tracking the timesteps where the human's goal changes—
i it dogs, then this and directly adjacent timesteps are added
t0 Dy. We now uncover a stark difference in the FDE when

*We discount predictions in the last 1 secoed of each rsjectary since this
is length of the prediction barizon.

Similarly, this is already
looking like a paper!



Finer: Flesh Out the Paper

trajectories, we can look at Fig. The robust controller
initially keeps the robot arm far away from all goals as the
human agent is moving towards its own goal. The robot
then accidentally changes the human's goal and thus needs to
continue avoiding the human before finally reaching its own
goal at ¢ = 6.3s. In contrast, the SLICE controller immediately
recognizes that it can move close to its desired goal because
it accurately predicts that the human will change its goal and
move out of the way—thus staying both safe and live.

B. Ablation: When Does Modeling Influence Marter?

Here, ask the question: when does it matter that we inject
an influence-aware model into the reach-avoid policy? We still
assume the human agent plays according to the generated data
distribution, but now try to understand the effect of choosing
a conditional prediction model instead of a marginal one (i.e.
one that does not condition on the robot’s future plan). We
compare both the performance of the predictors themselves
and the downstream effect on the learned reach-avoid policies.

| Al Dusa (14,000) || Intersetive Data (2457)  Non-Ineractive Data (11.543)
Marginal | 0.002 (0.12) £L007 {0.400) 0001 (11,07}
CBP 0L.001 (09} 0007 (1,30 CLODOT (M)

TABLE II: Average and Final Displacement Error of Marginal and CBP
predictors reported as: ADE (FDE).

This is a good time to add in results

Good time to convert bullet pts into sentences



Finer: Flesh Out the Paper

§ - I — Robot (ego)
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Fig. 2: Rollout of the three reach-avoid policies on the same initial condition. SLICE confidently understands that the human will be influenced to move out
of its way as it chooses the top goal and reaches the fastest. Marginal-RA eventually sees that the human will move and reaches next. The Robust-RA policy
stays cautious even as the human is moving towards a different goal and finishes last. [TODO: update colors of robots accordingly, make robots thicker
(to represent real width) add predictions + plan to time 0 for SLICE and marginal, remove belief circles, make goals bigger and more distinct in
color, remove red x (unused human goal), mark human’s goal more prominently]

This is the right stage to think:

* What additional results / visuals would help me
make my claims clearer?

* Do I need to revisit the way I chose to organize my
content and arguments?
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ine-Grained

You could stop at the sculpture
before...but you want to go to the next
level! Time to do fine-grained details

r=a%

Fig. 3: Closed-Loop Simulations. SLIDE, Marginal-RA and Robust-RA policies starting from the same initial condition. SLIDE
omblcaly bl ik 1 o Wl e spmowd k. saov S of A8 iy i & Sooger o e Bl s e o bt (e

human changes its mind from the blue bortle 1o the yellow mug a1 ¢ = 1.

farginal- RA waits until the human is out of its way and

chooses the yellow mug. Robust-RA stays cautious even as the human is moving towards a different goal and finishes last.

Influenceable Human

os ’
—
z s
¢ b

.
i v

1 . s
Completion Time ()

Fig. 4: Closed-Joop Completion Times. Histogram of completion
times for all methods interacting with the influcnceable human
model. S1.IDE has the highest frequency of short tajectories, while
SSA and Robust-RA have the highest incidence of timing out.

to properly account for the control bounds, the performance
‘would likely approach that of Robust-RA, though without
the goal-reaching policy built-in.

Results: Qualitative. We visualize SLIDF and Robust-
RA’s closed-loop trajectories in Fig. [3] Robust-RA mmi.lly
keeps the robot arm far away from all goals, \g for

human to move out of the way before reaching for a mug. m
contrast, SLIDE immediately recognizes that it can influence
the human's target object (bottom, Fig. ). It switches to
reach the boue, ensuring the human picks a cup, stays out
of its way, and enables the robot to complete the task faster.

Let’s take a look at some fine-grained details. ..

B. Ablation: When Does Modeling Influence Matter?

Next, we study when it matters that we use influence-
aware human models for safc control. We ablate if the robot
uses a conditional or marginal prediction model (ie. no
conditioning on robot's fuure plan). We compare both the
performance of the predictors and their effect on the leamed
reach-avoid policies.

|

TABLE 1I: Open-Loop Prediction Error. Average (ADE) and
Final Displacement Error (FDE) of marginal and CBP predictors.

i Size. Average inferred control bound
arginal RA (24 and SLIDE (Lh(un)D. Enics
shown per ctl. dimension and the max. dyn. feasible range is 20

Approach. In these experiments, the human agent acts
according 10 the data distribution in Sec. (V] We evaluate
the predictors on a dataset D of 100 held-out trajectorics,



Finer

SLICE (Ous

<

Marg

Robust-RA

=008 =12 1

— Robot (ego)
— Human (apponent)
* Predictions

23s 1=408 t

Fig. 2: Rollout of s thres rcach-avoid policis an the sams intial condiion. SLICE coafidendly understands that e buman wil be influcascd o move out
of it way IR iy sces buman will The Robust RA pokicy

(AB: metrics from above; maybe report in a bar chart?)

Results: Qualitative. (itavi: separate figure or is Fi
sufficient? maybe plot one where robust actually times
out?] To understand why the robust controller resuls in slawer
wajectories, we ean look at Fig. (3] The robust controller
imitially keeps the robot arm far away from all goals as the
human agent is moving towards it own goal. The robot
then accidentally changes the human’s goal and thus needs o
continue avoiding the human before finally reaching its own
goal at £ = 6.3s. In contrast, the SLICE controller immediately
recognizes that it can move close 1o its desired goal because
it accurately predicts that the human will change its goal and
way—thus staying both safe and live,

B. Ablation: Wien Does Modeling Infiucnce Matter?
Here, ask the question: when does it matter that we inject
an influcnce-aware model into the reach-aveid policy? We still
assume the human agent plays according 1o the generated data
distribution, but now try to understand the effect of cllcn!ing
a eonditional prediction model instead of a marginal one (ie.
one that does not condition on the robot’s future plan). We
compare o he pefomasce of the predicon thnsehves
d the downstrcam effcct on the leared reach-avoid policies
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Open-Loop Reslts: tive, The ADE is measured
as the average L2 distance of the predicied end-effector
position. from the first fimestep of the prediction harizon vs
the wue end-effector position. The FDE is measured as the
L2 distance between the end-eflector position predicted for
the final timestep of the prediction horizon vs the true end
effckor psion at the corrsgonding fimesep, e kst e

a dataset of 100 held-out trajectories (gencrated
in me same manner described in serﬂv—_/b. each 15 seconds
Tong. This results in 14,000 data point{’] and as seen in Table

T, th crvor ranes look very similar, with the CBP model doing

slightly better.

However, we know that highly interactive scenarios are
long-tail events (9], so we decompose the datasets into data
points where influcnce is happening Dy (2457 data poins) and
those where it is not D— (11,543 data poinis). This is done
by tracking the timesieps where the human’s goal changes—
if it does, then this and directly adjacent timesteps are added
to Dy. We now uncover a stark diffcrence in the FDE when
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Fig. 3: Closed-Loop Simulations. SLIDE, Marginal-RA and Robust-RA policies starting from the same initial condition. SLIDE
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el SLIDE has the bighes requoey of sbort uajoiris, while

SSA and Robust-RA have the highest incidence of timing out.

o pmpﬂly account for the control bounds, the performance
would I h that of Robust-RA, though without
the M.machm; policy built-in,

Results: Qualitative. We visualize SLIDF and Robust-
RA’s closed-loop trajectories in Fig. 3] Robust-RA initially
keeps the robot am far away from all goals, waiting for the
human to move out of the way before reaching for a mug. In
contrast, SLIDE immediately recognizes that it can influence
the human's target object (bottom, Fig. ). It switches to
reach the boue, ensuring the human picks a cup, stays out
of its way, and enables the robot to complete the task faster.

B. Ablation: When Does Modeling Influence Matter?

Next, we study when it matters that we use influence-
aware human models for safc control. We ablate if the robot
uses a conditional or marginal prediction model (ie. no
conditioning on robot's fuure plan). We compare both the
performance of the predictors and their effect on the leamed
reach-avoid policies.
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Approach. In these experiments, the human agent acts
according 10 the data distribution in Sec. (V] We evaluate
the predictors on a dataset D of 100 held-out trajectorics,
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Results: Qualitative. [Ravi: separate figure or is Fig. 2
sufficient? maybe plot one where robust actually times
out?] To understand why the robust controller results in slower
trajectories, we can look at Fig. The robust controller
initially keeps the robot arm far away from all goals as the
human agent is moving towards its own goal. The robot
then accidentally changes the human’s goal and thus needs to
continue avoiding the human before finally reaching its own
goal at t = 6.3s. In contrast, the SLICE controller immediately
recognizes that it can move close to its desired goal because
it accurately predicts that the human will change its goal and
move out of the way—thus staying both safe and live.

B. Ablation: When Does Modeling Influence Matter?

Here, ask the question: when does it matter that we inject
an influence-aware model into the reach-avoid policy? We still
assume the human agent plays according to the generated data
distribution, but now try to understand the effect of choosing
a conditional prediction model instead of a marginal one (i.
one that does not condition on the robot’s future plan). We
compare both the performance of the predictors themselves
and the downstream effect on the learned reach-avoid policies.

| All Dot (14,000) || Iatersctive Duta (245T)  Non-Interactive Data (11,543)
Marginal | 0.002 0.12) 0.007 (0.40) 0001 (0.07)
CBP 0.001 10.09) .07 10.30) 00007 (01.04)

TABLE II: Average and Final Displacement Error of Marginal and CBP
predictors reported as: ADE (FDE).

Finer

o | pesy | n2tae) 167,731

TABLE HI: Average inferred control bound size from marginal predictor
[i4yq| and CBP predictor |ify (ur)|. Table entries are shown per control
input dimension and the maximum dynamically feasible range is 20.

Open-Loop Results: Quantitative. The ADE is measured
as the average L2 distance of the predicted end-effector
position from the first timestep of the prediction horizon vs
the true end-effector position. The FDE is measured as the
L2 distance between the end-effector position predicted for
the final timestep of the prediction horizon vs the true end
effector position at the corresponding timestep. We test the
predictors on a dataset of 100 held-out trajectories (generated
in the same manner described in Sec. [V], each 15 seconds
long. This results in 14,000 data pujnld as seen in Table
[11] the error rates look very similar, with the CBP model doing
slightly better.

However, we know that highly interactive scenarios are
long-tail events [9], so we decompose the datasets into data
points where influence is happening D; (2457 data points) and
those where it is not D_; (11,543 data points). This is done
by tracking the timesteps where the human's goal changes—
if it does, then this and directly adjacent timesteps are added
to Dy. We now uncover a stark difference in the FDE when

We discount predictions in the last | second of each trajectory since this
is length of the prediction horizon.

Tighten the language — get to the point!
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Fig. 4: Closed-loop Completion Times. Histogram of completion

B. Ablation: When Does Modeling Influence Marter?

Next, we study when it matters that we use influence-
aware human models for safe control. We ablate if the robot
uses a ditional or ! prediction model (i.e. no
conditioning on robot’s future plan). We compare both the
performance of the predictors and their effect on the learned
reach-avoid policies.

| All Data (14,000) || Interactive Data (2457)  Non-Inicractive Data (11,543)

times for all methods i ing with the in human
model. SLIDE has the highest frequency of short trajectories, while
SSA and Robust-RA have the highest incidence of timing out.

to properly account for the control bounds, the performance
would likely approach that of Robust-RA, though without
the goal-reaching policy built-in.

Results: Qualitative. We visualize SLIDE and Robust-
RA’s closed-loop trajectories in Fig. 3] Robust-RA initially
keeps the robot arm far away from all goals, waiting for the
human to move out of the way before reaching for a mug. In
contrast, SLIDE immediately recognizes that it can influence
the human’s target object (bottom, Fig. [3). It switches to
reach the bottle, ensuring the human picks a cup, stays out
of its way, and enables the robot to complete the task faster.

Marginal | 0.002 (0.12) 0.007 (0.40) 0.001 (0.07)
CBI 0.001 (0.09) 0.007 (0.30) 0.0007 10.04)

TABLE II: Open-Loop Prediction Error. Average (ADE) and
Final Displacement Error (FDE) of marginal and CBP predictors.

| Al Data (14,000) || Interactive Data (2,457)  Non-Interactive Data (11,543)

Marginal | [123, 127] [13.8, 13.6] [119, 12.5]
CBP 78, 83 (12, 129] [67.73]

TABLE IIL: Inferred l{3 Size. Average inferred control bound
size from Marginal-RA (Ux|) and SLIDE (|t (ur)). Entries
shown per ctrl. dimension and the max. dyn. feasible range is 20.

Approach. In these experiments, the human agent acts
according to the data distribution in Sec. [V] We evaluate
the predictors on a dataset D of 100 held-out trajectories,

Clarify our experimental approach
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Clear thinking!



Theorem. Clear thinking == Clear writing.



Theorem. Clear thinking

Clear writing.

Proof. William Zinsser, W., 1980. Simplicity. In “On
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https://www.geo.umass.edu/faculty/wclement/Writing/zinsser.html

Theorem. Clear thinking == Clear writing.

Proof. William Zinsser, W., 1980. Simplicity. In “On
Writing Well: An Informal Guide to Writing Nonfiction.”

Now: Reading ©



Clear thinking is particularly helpful when
it comes to the abstract and introductions

These sections require the most “distillation” of your key ideas

Reviewers will often decide at a “gut level” if a paper
should be accepted or rejected based on the introduction!
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1. INTRODUCTION

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

I1. RELATED WORK

Nam dui ligula, fringilla a, evismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

1II. METHOD

Nam dui ligula, fringilla a, evismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliqguam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

Identify applicable funding agency here. If none, delete this

email address or ORCID

email address or ORCID

1V. EXPERIMENTS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliqguam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

V. CONCLUSION & DISCUSSION

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus, Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit moll
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus, Aliquam tincidunt uma. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.
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Robots that Learn to Safely Influence via
Prediction-Informed Reach-Avoid Dynamic Games

Ravi Pandya,

Abstract— Robots can influence people to accomplish their
tasks more efficiently: autonomous cars can inch forward at
an intersection to pass through, and tabletop manipulators
can go for an object on the table first. However, a robot’s
ability to influence can also compromise the safety of nearby
people if naively executed. In this work, we pose and solve a
novel robust reach-avoid dynamic game which enables robots
1o be maximally influential, but only when a safety backup
control exists. On the human side, we model the human’s
behavior as goal-driven but conditioned on the Tobot's plan,
enabling us to capture influence. On the robot side, we solve
the dynamic game in the joint physical and belief space,
enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offiine game-
theoretic reinforcement learning. We compare our approach
1o a robust baseline that treats the human as a worst-case
adversary, a safety controller that does not explicitly reason
about influence, and an energy-function-based safety shield, We
find that SLIDE consistently enables the robot to leverage the
influence it has on the human when it is safe to do so, ultimately
allowing the robot to be less conservative while still ensuring a
high safety rate during task execution. Project website: https:
//cmu-intentlab. github.io/safe-influence/

L. INTRODUCTION

‘Whether intentional or not, influence underlies many
multi-agent interactions, from nudging into somecone’s lane
while driving to merge faster, to grabbing your favorite bottle
first so that your partner has to get a different one (Fig. 1,
top right). While exploiting such influence can enable agents
like robots to be more efficient, it can also lead to unsafe
outcomes: if you quickly reach for your favorite mug but
your partner doesn’t adapt fast cnough or is unwilling to
change, then you can cause @ collision (Fig. 1, bottom left)

In this work, we seck to enable robots to safely influence
during human-robot interactions. However, we face two chal-
Ienges, one from the human modeling perspective and the
other from the robot control perspective. On one hand,
difficult to hand-design a model that captures the complexity
of how people can be influenced by the robot's behavior,
On the other hand, the robot actions that are maximally
influential are also often those than can lead to states of
irrecoverable failure where no safe robot action exists.

To tackle this complexity, we pose a novel robust reach-
avoid dynamic game between the human and robot. First, we
take inspiration from data-driven trajectory forecasting [1]
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Fig. 1 Both human and robot arms want to reach their desired
objects on the table, but they don’t kiow who is going for which
object. Top Row: The human’s desired object can be influenced by
the robot. Using a influence-unaware safety shield the robot can stay
safe, but fails to reach its own object (not five). With our method
(SLIDE) the robot influences the human’s goal and safely reaches
its object. Bottom Row: The human never changes their desired
object. Naive influence-aware robot controllers are over-confident
and collide. SLIDE recogaizes that this can be unsafe and chooses
a different goal for the robot, staying safe and live.

and inform the human’s behavior in the dynamic game vi
a deep conditional behavior prediction (CBP) model. With
CBPs, the robot can lear implicit patterns in the responses
of the human conditioned on other agents’ future behavior.
Second, we solve the reach-avoid game in the joint physical
and robot belief space. This enables the robot to reach its goal
while staying robust to uncertainty over the human’s future
behavior, instead of always trusting what the conditional
model predicts for a short horizon. Finally, to solve this high-
dimensional game offline, we adopt approximate reach-avoid
reinforcement leaming solvers [2] that have recently shown
promise in scaling to high-dimensional systems [3], [4].

With our framework, called SLIDE (Safely Leveraging
Influence in Dynamic Environments), we can compute rabot
policies that exploit influence 10 maximize efficiency (ie.,
liveness) while staying robust to uncertainty and minimizing
safety violations (right, Fig. 1). Through extensive simula-
tions in a 39-dimensional human-robot collaborative manip-
ulation scenario, we show that SLIDE is less conservative
than prior safe control approaches while staying safe even in
the presence of out-of-distribution human behavior.

1I. RELATED WORK

ion: Safe C: i We ground
our approach in human-robot collaborative manipulation



Initial Abstract Tells us about an assumption

Today, the majority of safe control approaches are for robots
acting in isolation or assume that human behavior will stay the
same over time. However, for some human-robot interactions,
like collaborative manipulation, the human’s behavior can be
influenced depending on what the robot does (e.g., picking an
alternative block). If we do not properly account for this
influence within our safe control synthesis, the model mismatch
will lead to conservative robot behavior at best and unsafe
behavior at worst. In this work, we treat the human’s internal
intent (e.g., desired block to pick) as a virtual state which evolves
over time as a function of the past human-robot interaction
history. By augmenting the robot’s state space with the time-
varying human intent, we can solve a robust safety game that
enables the robot to anticipate how present actions will influence
the human to change their goal and, in turn, bring the human-
robot team closer to an unsafe state. We instantiate this idea in a
close-proximity tabletop manipulation task where the human
and robot have to efficiently grab blocks and sort them without
colliding into each other, but who grabs which block can be
influenced by the other agent. By using a learned model of how
the human collaborator’s goal can change over time within our
safety analysis framework, the robotic arm is less conservative
while still ensuring a high safety rate during task execution.

Question: What's good?

Tells us what goes wrong under assumption

Describes takeaways
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influenced depending on what the robot does (e.g., picking an
alternative block). If we do not properly account for this
influence within our safe control synthesis, the model mismatch
will lead to conservative robot behavior at best and unsafe
behavior at worst. In this work, we treat the human’s internal
intent (e.g., desired block to pick) as a virtual state which evolves
over time as a function of the past human-robot interaction
history. By augmenting the robot’s state space with the time-
varying human intent, we can solve a robust safety game that
enables the robot to anticipate how present actions will influence
the human to change their goal and, in turn, bring the human-
robot team closer to an unsafe state. We instantiate this idea in a
close-proximity tabletop manipulation task where the human
and robot have to efficiently grab blocks and sort them without
colliding into each other, but who grabs which block can be
influenced by the other agent. By using a learned model of how
the human collaborator’s goal can change over time within our
safety analysis framework, the robotic arm is less conservative
while still ensuring a high safety rate during task execution.

Question: What's wrong?

Contribution isn’t the clearest

Have to read %2 way to learn what we did!

How did we solve this robust safety game?

What is this improvement relative to?



Final Abstract

Robots can influence people to accomplish their tasks more
efficiently: autonomous cars can inch forward at an intersection to
pass through, and tabletop manipulators can go for an object on
the table first. However, a robot's ability to influence can also
compromise the safety of nearby people if naively executed. In
this work, we pose and solve a novel robust reach-avoid dynamic
game which enables robots to be maximally influential, but only
when a safety backup control exists. On the human side, we
model the human's behavior as goal-driven but conditioned on
the robot's plan, enabling us to capture influence. On the robot
side, we solve the dynamic game in the joint physical and belief
space, enabling the robot to reason about how its uncertainty in
human behavior will evolve over time. We instantiate our
method, called SLIDE (Safely Leveraging Influence in Dynamic
Environments), in a high-dimensional (39-D) simulated human-
robot collaborative manipulation task solved via offline game-
theoretic reinforcement learning. We compare our approach to a
robust baseline that treats the human as a worst-case adversary, a
safety controller that does not explicitly reason about influence,
and an energy-function-based safety shield. We find that SLIDE
consistently enables the robot to leverage the influence it has on
the human when it is safe to do so, ultimately allowing the robot
to be less conservative while still ensuring a high safety rate
during task execution.
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Imagine a robot performing a manipulation task next to a person, like moving the person’s coffee
mug from a cabinet to the table (Fig. 1). As the robot is moving, the person might notice that the
robot is carrying the mug too high above the table. Knowing that the mug would break if it were to
slip and fall from so far up, the person easily intervenes and starts pushing the robot’s end-effector
down to bring the mug closer to the table. In this work, we focus on how the robot should then
respond to such physical human-robot interaction (pHRI).

Several reactive control strategies have been developed to deal with pHRI [1, 2, 3]. For instance,
when a human applies a force on the robot, it can render a desired impedance or switch to gravity
compensation and allow the human to easily move the robot around. In these strategies, the moment
the human lets go of the robot, it resumes its original behavior—our robot from earlier would go
back to carrying the mug too high, requiring the person to continue intervening until it finished the
task (Fig. 1, left).

Although such control strategies guarantee fast reaction to unexpected forces, the robot’s return to
its original motion stems from a fundamental limitation of traditional pHRI strategies: they miss
the fact that human interventions are often intentional and occur because the robot is doing some-
thing wrong. While the robot’s original behavior may have been optimal with respect to the robot’s
pre-defined objective function, the fact that a human intervention was necessary implies that this
objective function was not quite right.

QOur insight is that because pHRI is intentional, it is also informative—it provides observations
about the correct robot objective function, and the robot can leverage these observations to learn
that correct objective.

Returning to our example, if the person is applying forces to push the robot’s end-effector closer to
the table, then the robot should change its objective function to reflect this preference, and complete
the rest of the current task accordingly, keeping the mug lower (Fig. 1, right). Ultimately, hu-
man interactions should not be thought of as disturbances, which perturb the robot from its desired
behavior, but rather as corrections, which feach the robot its desired behavior,

In this paper, we make the following contributions:

Formalism. We formalize reacting to pHRI as the problem of acting in a dynamical system to
optimize an objective function, with two caveats: 1) the objective function has unknown parameters
@, and 2) human interventions serve as observations about these unknown parameters: we model
human behavior as approximately optimal with respect to the true objective. As stated, this problem
is an instance of a Partially Observable Markov Decision Process (POMDP). Although we cannot
solve it in real-time using POMDP solvers, this formalism is crucial to converting the problem of
reacting to pHRI into a clearly defined optimization problem. In addition, our formalism enables
PHRI approaches to be justified and compared in terms of this optimization criterion.

Online Solution. We introduce a solution that adapts learning from demonstration approaches to
our online pHRI setting [4, 5], but derive it as an approximate solution to the problem above. This
enables the robot to adapt to pHRI in real-time, as the current task is unfolding. Key to this ap-
proximation is simplifying the observation model: rather than interpreting instantaneous forces as
noisy-optimal with respect to the value function given 0, we interpret them as implicitly inducing
a noisy-optimal desired trajectory. Reasoning in trajectory space enables an efficient approximate
online gradient approach to estimating 6.

User Study. We conduct a user study with the JACO2 7-DoF robotic arm to assess how online
learning from physical interactions during a task affects the robot’s objective performance, as well
as subjective participant perceptions.

Overall, our work is a first step towards learning robot objectives online from pHRI.
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Abstract: When humans and robots work in close proximity, physical interaction
is inevitable. Traditionally, robots treat physical interaction as a disturbance, and
resume their original behavior after the interaction ends. In contrast, we argue
that physical human interaction is informative: it is useful information about how
the robot should be doing its task. We formalize learning from such interactions
as a dynamical system in which the task objective has parameters that are part
of the hidden state, and physical human interactions are observations about these
parameters. We derive an online approximation of the robot’s optimal policy in
this system, and test it in a user study. The results suggest that learning from
physical interaction leads to better robot task performance with less human effort.
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1. INTRODUCTION

Nam dui ligula, fringilla a, evismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

Nam dui ligula, aa, odales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

1II. METHOD

Nam dui ligula, fringilla a, evismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliqguam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.
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1V. EXPERIMENTS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliqguam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.

V. CONCLUSION & DISCUSSION

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus, Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla.
Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus luctus mauris.
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II. RELATED WORK

Safety Filtering. Safety filters—which detect unsafe actions
and minimally modify them—are increasingly popular ways
to ensure closed-loop safety [9], [17]-[19]. The most popular
methods are control barrier functions (CBFs) [10], [20]-
[23], Hamilton-Jacobi (HJ) reachability [24]-[28], and model
predictive shielding [29]. In this work we build off of HJ
reachability due to its ability to handle non-convex target
and constraint sets, control constraints and uncertainty in
the system dynamics, and its association with a suite of
numerical tools including recent neural approximations that
scaled safe set synthesis to 15-200 dimensions [30]-[33]. Our
key idea is that by treating the human’s goal as a virtual state,
we can do safety value function synthesis and safety filtering
on the goal (instead of on the actions as is typical). This
enables the robot to minimally modify the human’s desired
goal and propose safe alternatives.

Uncertainty Quantification of Learned Robot Policies.
For modular robot policies that utilize an upstream goal
or intent estimator, prior works have quantified goal uncer-
tainty [34]-[37], calibrated task plans inferred from language
commands [38] and quantified their execution risk [39].
For end-to-end behavior cloned policies, prior works have
quantified their generalizability via statistical bounds [40],
action uncertainty via temperature scaling [41] or conformal
prediction [42], and predicted policy success rate via value
estimation [43]. Our work uses control-theoretic verification
tools to analyze the closed-loop success of a robot’s policy.

Robot Communication of Uncertainty & Capability. Prior
works in human-robot interaction have enabled robots to
communicate their task uncertainty via dialogue [44]-[46],
communicate their objectives through motion or haptics [47],
[48], express physical capabilities [49], or explain their
failures [50], [51] to people (see [52] for a review). Instead
of having robots only explain what they are uncertain about
(or ask for help), we enable robots to actively suggest
alternatives they can safely accomplish.

Sections highlight the key
“dimensions”

End of each section
highlights what is new
about our approach from
this “dimension”

Content describes
foundational work as
well as recent work
that is most relevant

2 RELATED WORK

Inferring human preferences and beliefs. A large body of work

has focused on learning human reward functions via inverse rein-

forcement learning (IRL) [19, 22, 31]. This includes inferring hu-

man driving preferences [34, 40], desired exoskeleton gaits [25],

intended goals [17], motion preferences [35], and human under-

standing about physics [38]. A key assumption in these works is

that people have static internal models of preferences or physics. In-
stead, we are interested in learning a dynamic model of how humans
change their preferences, goals, and understanding of physics.

Models of human learning for robot decision-making. Prior
works in robotics model human learning as Bayesian inference
when updating goals or preferences [8, 14, 16], a linear Gaussian
system when updating trust [7], gradient-based IRL when learning
rewards [4], or as a multi-armed bandit algorithm when updating
preferences [6]. Instead of assuming a known model of how people
learn, in this work we seek to learn a model of how humans learn.
Most related to our work is [39] which learns a model of how
people estimate the state of the world. In this work, we propose a
generalization where the human is not estimating world state, but
updating their preferences, goals, and internal physics model. This
induces a significantly harder model learning problem, for which
we propose a tractable approximation.

Cognitive theories of human learning. Models of human infer-
ence have been extensively studied in both computational cognitive
science [2, 13] and psychology [36, 50]. While human cognition
can be broadly modeled at three levels (computational, algorith-
mic, and hardware) [27], most relevant to us are the algorithmic
works. [13] posits that modeling human reasoning as “implement-
ing” an exact Bayesian posterior or a gradient-based point estimate
are both compatible with probabilistic models of human cognition,
and are a potential source of rational process models [45]. Further,
[42] finds evidence that humans may update their forward models
using the models’ prediction error as loss functions. Inspired by
these works, our simulated human experiments leverage exact and
approximate probabilistic inference models, and we study if our
flexible, learning-based method can effectively recover such models.
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3 MODELING HOW HUMANS LEARN & ACT

We begin by mathematically modelling the dynamics of human
learning, before diving into how the robot can infer this dynamics
model and use it influence the human’s internal model evolution.

Notation. Let x € R" be the state of the world including the robot
(e.g., robot end-effector position, objects, etc.). Both the human and
robot can take actions, uyy € R™ and ug € R™ respectively, that
affect the next state. Let the deterministic world dynamics be

X = F ufy up). @

Human internal model. We model the human as having an in-
ternal parameter vector, 8y, which captures a latent aspect of the
task that the human is uncertain about but continuously learns
about. Going back to our motivating example where the human
teleoperates a robot, 8y can model the human’s current estimate of
the robot’s physical properties, like its inertia. Or, ég could model
the human’s current preferences for teleoperation: they start off
wanting to move the robot to one goal, but then change their mind
to a new goal after realizing it is easier to reach. Regardless of what
Oy represents, it is important to remember that it is time-varying
and that it evolves as a function of what the human observes.
Human policy: acting under the internal model. In our work,
we model the human actions as driven by some reward function,
Ry (x, uyy; Oy), which depends on the current state, the human’s
action, and their internal parameter 6. Following prior works
[2, 24, 52, 55], we treat the human as a noisily-optimal actor:

- -1
Pl | x; B) = €0 (i f Qi gg) " (2)

where the optimal state-action value is denoted by On (x, un; 6g)
and x is the current state, uyy is the human action, and 6y the
human’s current parameter estimate.

We make two simplifying assumptions in this model. First, the
human does not explicitly account for the actions ug the robot
could take. Instead, the human reacts to the current state x, which
implicitly captures the effect of any robot actions that change the
state. This models scenarios where the human is doing the task on
their own, or where the human is not aware of how the robot is
providing guidance. Second, when the human plans their action,
we assume that they separate the estimation of fy from policy
generation and they plan with their current estimate.

4 INFERRING THE DYNAMICS OF HUMAN
LEARNING

In this section we focus on inferring the dynamics of human learn-
ing by leveraging demonstrations which naturally exhibit human
learning; for example, initial trials of a human teleoperating a robot
they have never interacted with before. We assume these demon-
strations contain only the state and action histories and do not
contain ground-truth human internal model data (since this is not
possible in practice). However, we do assume that the observed
actions are coupled with the human’s internal model, allowing us
to leverage demonstrations to infer the dynamics of the human’s
internal model. Given this dataset, we seek to fit a nonlinear model
to represent the dynamics of human learning,

= @
where ¢ are the parameters of the approximate model. In the follow-

ing sections, we formalize inferring ff as a maximum likelihood
estimation (MLE) problem and propose a tractable approximation.

4.1 Formalizing the Inference Problem

Let Dyermo = {(x nH).-}?iu be a collection of N demonstrations
containing state and human action trajectories of length T time
steps. We want to infer the parameter of the human’s learning
dynamics, ¢, and the initial human parameter estimate, 8&, which
maximizes the likelihood of the observed demonstrations. We for-
mulate this inference via the constrained optimization problem:

T-1
max Y X tog [ 1xha), )
#64 (xuH) € Dgemo 1=0
st B = F(B5, M ul), ®

where P(i; | x*,6") is the human action likelihood from Equa-
tion (2) and the constraint ensures that the human’s internal param-
eter evolves according to the human'’s learning dynamics model.

4.2 Solving the Inference Problem

Unfortunately, the inference problem in Equation (5) is intractable
to solve directly for two main reasons. First, recall that the human’s
internal model 8y of their preferences, dynamics, or goals, changes
over time. This means that at each timestep the human is gener-
ating data uy under a possibly different 6. In other words, the
human acts under a new action policy ]P(u;_l | x';GI‘_I) at each t, re-
quiring us to solve an entirely new reinforcement learning problem
to obtain the action policy at each time step along the inference
horizon. In the case where 6y is a continuous, high-dimensional
parameter (e.g., physical properties of the robot dynamics), this is
intractable to compute per-timestep. Secondly, even if we could
obtain the human'’s policy infinitely fast, our optimization problem
still requires searching over the the high-dimensional space of ¢
and fy. Gradient-based optimization is a natural choice, but we
need to be able to compute the gradient of the MLE objective and,
therefore, differentiate through Qp with respect to 0.
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III. METHOD

Universal Manipulation Interface (UMI) is hand-held data
collection and policy learning framework that allows direct
transfer from in-the-wild human demonstrations to deployable
robot policies. It is designed with the following goals in mind:

« Portable. The hand-held UMI grippers can be taken to
any environment and start data collection with close-to-zero
setup time.

« Capable. The ability to capture and transfer natural and
complex human manipulation skills beyond pick-and-place.

« Sufficient. The collected data should contain sufficient
information for learning effective robot policies and con-
tain minimal embodiment-specific information that would
prevent transfer.

« Reproducible: Researchers and enthusiasts should be able
to consistently build UMI grippers and use data to train
their own robots, even with different robot arms.

The following sections describe how we enable the above
goals through our hardware and policy interface design.

https://umi-gripper.github.io/umi.pdf

A. Demonstration Interface Design

UMTI’s data collection hardware takes the form of a trigger-
activated, handheld 3D printed parallel jaw gripper with soft
fingers, mounted with a GoPro camera as the only sensor
and recording device (see HD1). For bimanual manipulation,
UMI can be trivially extended with another gripper. The key
research question we need to address here is:

How can we capture sufficient information for a wide
variety of tasks with just @ wrist-mounted camera?

Specifically, on the observation side, the device needs
to capture sufficient visual context to infer action HD2 and
critical depth information HD3. On the action side, it needs
to capture precise robot action under fast human motion
HD4, detailed subtle adjustments on griping width HDS, and
automatically check whether each demonstration is valid glven
the robot hardware kinematics HD6. The following

Ultra-wide ar\gle 155° FOV

Left
Virtual
Camera

Main
Camera

Digital
Reflection

(c)

Fig. 4: UM_I Side Mjrmrs The ultra-wide-angle camera coupled
with st y mirrors, facilitates implicit stereo depth

Raw Image
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describe details on how we achieve these goals.

HD1. Wrist-mounted cameras as input observation. We
rely solely on wrist-mounted cameras, without the need for
any external camera setups. When deploying UMI on a robot,
we place GoPro cameras with the same location with respect
to the same 3D-printed fingers as on the hand-held gripper.
This design provides the following benefits:

1) Minimizing the observation embodiment gaps. Thanks
to our hardware design, the videos observed in wrist-
mount cameras are almost indistinguishable between human
demonstrations and robot deployment, making the policy
input less sensitive to embodiment.

2) M rob B the camera is mechani-
cally fixed relative to the fingers, mounting UMI on robots
does not require camera-robot-world calibration. Hence, the
system is much more robust to mechanical shocks, making
it easy to deploy.

3) Portable hardware setup. Without the need for an external
static camera or additional onboard compute, we largely
simplify the data collection setup and make the whole
system highly portable.

4) Camera motion for natural data diversification. A side
benefit we observed from experiments is that when training
with a moving camera, the policy learns to focus on task-
relevant objects or regions instead of background structures
(similar in effect to random cropping). As a result, the final
policy naturally becomes more robust against distractors at
inference time.

Avoiding use of external static cameras also introduce

dditional chall for do policy learning. For
example, the policy now needs to handle non-stationary and
partial observations. We mitigated these issues by leveraging
wide-FoV Fisheye Lens HD2, and robust visual tracking HD4,
described in the following sections.

HD2. Fisheye Lens for visual context. We use a 155-
degree Fisheye lens attachment on wrist-mounted GoPro cam-
era, which provides sufficient visual context for a wide range
of tasks, as shown in Fig. 2. As the policy input, we directly

estimation. (a): The view through each mirror effectively creates two
virtual cameras, whose poses are reflected along the mirror planes
with respect to the main camera. (b): Ketchup on the plate, occluded
from the main camera view, is visible inside the right mirror, proving
that mirrors simulate cameras with different optical centers. (c): We
digitally reflect the content inside mirrors for policy observation. Note
the orientation of the cup handle becomes consistent across all 3
views after reflection.

use raw Fisheye images without undistortion since Fisheye
effects conveniently preserve resolution in the center while
compressing information in the peripheral view. In contrast,
rectified pinhole image (Fig. 3 right) exhibits extreme distor-
tions, making it unsuitable for learning due to the wide FoV.
Beyond improving SLAM robustness with increased visual
features and overlap [52], our quantitative evaluation (Sec
V-A) shows that the Fisheye lens improves policy performance
by providing the necessary visual context.

HD3. Side mirrors for implicit stereo. To mitigate the
lack of direct depth perception from the monocular camera
view, we placed a pair of physical mirrors in the cameras’
peripheral view which creates implicit stereo views all in
the same image. As illustrated in Fig 4 (a), the images
inside the mirrors are equivalent to what can be seen from
additional cameras reflected along the mirror plane, without
the additional cost and weight. To make use of these mirror
views, we found that digitally reflecting the crop of the images
in the mirrors, shown in Fig 4 (c), yields the best result for
policy learning (Sec. V-A). Note that without digital reflection,
the orientation of objects seen through side mirrors is the
opposite of that in the main camera view.

HD4. IMU-aware tracking. UMI captures rapid move-
ments with absolute scale by leveraging GoPro’s built-in
capability to record IMU data (accelerometer and gyroscope)
into standard mp4 video files [15]. By jointly optimizing visual
tracking and inertial pose constraints, our Inertial-monocular
SLAM system based on ORB-SLAM3 [7] maintains tracking
for a short period of time even if visual tracking fails due to
motion blur or a lack of visual features (e.g. looking down
at a table). This allows UMI to capture and deploy highly
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7 USER STUDY: TEACHING TO
TELEOPERATE

So far we conducted experiments with simulated human behavior,
allowing us to analyze the quality of our inferred human learning
dynamics model, and the robot’s ability to influence simulated
humans. Here we investigate if we can infer the dynamics of real
human learning, and enable robots to influence real users.

We focus on scenarios where the robot’s physical dynamics are
different from what the human is used to; for example, perhaps the
human was used to teleoperating a robotic wheelchair, but is now
teleoperating a robotic arm. As they interact with the robotic arm,
they will naturally learn about the new robot dynamics. In our IRB-
approved user study, we investigate if a robot can actively teach
a human the physical dynamics and improve their teleoperation
performance faster than if the human does the task on their own. In
other words, we aim to understand if a robot can align the human’s
internal model with the robot’s.

Experimental Setup. We designed a teleoperation task where the
human controls a 7DOF Jaco robot arm through a webcam-based
gesture interface (Figure 1). The participant uses their index finger
to indicate how the end-effector should move parallel to the tabletop.
The task is to move the end-effector to reach four goals on the table
in a counter-clockwise pattern, tracing out a diamond pattern. All
participants experience a familiarzation task where they perform
the task unassisted, with the default robot dynamics in order to
understand the gesture interface. In software, we then simulate two
“new” robots, each with different physical properties.

Independent Variables. We manipulated the robot strategy with
two levels: no-teaching and active-teaching. The robot either let the
human do the task on their own, or it modified the human’s input
to teach them about the physical robot dynamics via Equation (12).
We also manipulate the robot physical dynamics with two levels:
end-effector dynamics bias in x-direction and bias in y-direction.

Dependent Measures. A challenge in evaluating our experiment
is that we do not have access to the human’s ground-truth internal
model. As a proxy, we measure human action optimality distance:
|l — u*| \%. Intuitively, the better the human understands the
robot, the more optimally they should be able to control it to reach
the goals. Since we cannot directly measure a human’s internal
understanding, we instead look at their actions to measure their
deviation from the optimal action under the robot’s true physics.
We also measured subjective measures via a Likert scale survey.

Hypotheses. H6: Participants in the active teaching condition be-
come optimal teleoperators faster than passively learning on their own.

H7: Participants feel they learned to teleoperate faster and understood
the robot dynamics better in the active teaching condition.

Participants. We recruited two groups of participants from the
campus community: the first for providing data for inferring the
dynamics of human learning (12 participants; 2 female, 10 male,
age 18-34, all with technical backgrounds), and the second for the
user study (10 participants; 1 female, 8 male, 1 non-binary, age
18-34, all with technical backgrounds). For inferring the human
learning dynamics, all participants learned to teleoperate the robot
unassisted and we counterbalanced the robot physical dynamics.

Procedure. A within-subjects design is challenging, since humans
who experience one condition will learn about the robots and then
carry over that experience to the next condition. To study the effect
of this confound, each participant experienced a combination of
robot strategy and physical dynamics conditions, but in a random
order. For example, one group of participants would interact with
the (active-teaching, bias-x) condition and then (no-teaching, bias-y)
condition. Thus, each participant experiences both robot strategies
and biases. We counterbalance the order in which the participants
experience the combination. All participants experienced a familiar-
ization round at the start and between each experimental condition,
to “reset” their mental model of the robot. Each participant gave 3
demonstrations per condition, each lasting ~1 minute.

Quantitative Results. Figure 5 shows how human action opti-
mality distance varies over time with each robot strategy. We con-
ducted an ANOVA with robot strategy and stage (first or second
half of interaction) as factors and robot physical dynamics as ran-
dom effect. We found a significant main effect of the robot strategy
(F(1,19) = 12.943,p = 0.001) and a marginal interaction effect
between the robot strategy and the interaction stage (p = 0.098),
so we did not run a post-hoc analysis. However, we hypothesize
that this marginal interaction effect comes from the fact that early-
stage changes in robot behavior (induced by either robot strategy)
influences the human’s later-stage action optimality. Ultimately,
the quantitative results indicate a significant improvement in the
human’s action optimality when the robot actively teaches them
compared to when the human passively learns (supporting H6).
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Environments. We study uncertainty in the latent preferences
and low control precision contexts through experiments in
three controlled environments: in a toy assistive navigation
GridWorld environment for building intuition, and a Kinova
robotic manipulator 7DOF goal-reaching and 7DOF cup
grasping setting. The Gridworld environment is a 25x25
gridworld in which the robot must navigate to achieve a goal
state. In the 7DOF settings, expert demonstrators are tasked
with either kinesthetically moving the robot towards one of
the two objects on the table, or moving the robot to grasp
a mug from either the lip or the handle. The uncertainty
context informs the construction of the training dataset for
each domain. We study uncertainty in the low-dimensional
input schemes context through an experiment in the 7DOF
goal-reaching setting. To evaluate our method on diverse
user input schemes at calibration time, we collected low-
dimensional input sequences from a mixture of simulated users
and novice human operators (more details in Section V).

Baselines. We compare our method to vanilla Quantile
Regression (QR), where we train our teleoperation controller
but do not calibrate the intervals on the target user online. We
additionally compare our method to an ensemble uncertainty
quantification approach Ensemble [33]. For the Ensemble
baseline, we train M = 5 neural networks with the same
encoder-decoder structure as in our teleoperation controller de-
sign. Each model outputs a predicted mean pg(uy, s) € R
and variance o2 (us;, s) € R™ for the prediction of the high-
DoF robot action @ intended by the user input uy; at state s.
We randomly initialize the model weights and data order. We
take the mixture of the multivariate Gaussians as the model
prediction, and the first standard deviation from the mean as
the prediction interval Cy(uy, s).

Conformal Hyperparameters. Our implementation of ACQR
uses a step size v = 0.005 [17], target mis-coverage level of
a = 0.1, and an initial o; = 0.1. Additionally, our proposed
detection mechanism (Section IV-C) uses a threshold 3. In
the latent preferences setup, fBgriqa = 1.5, Bgoar = 0.05, and
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(simulation results)

Takeaway blocks let the reader
skim the experimental results
in a very intuitive way

VI. EVALUATION RESULTS

We break down our results into five major takeaways,
focusing on in-distribution (ID) and out-of-distribution (OOD)
calibration users, comparison of our various uncertainty quan-
tification methods, and the performance of our proposed
detection mechanism.

Takeaway 1: Even when users operate with an in-distribution
input scheme on in-distribution high-DoF trajectories, an
uncalibrated mapping fo (QR) miscovers the human’s desired
high-DoF action more than

We highlight this takeaway in the setting of 7DOF Cup-
grasping with diverse latent preferences, but further results
can be found in the supplementary. Recall that in this setting
the demonstrators may pick up a cup from the handle, others
from the lip. Thus, Dy, consists of 14 expert demonstration
trajectories, where half pick up the cup from the handle, and
half pick up the cup from the lip (shown in left of Figure 3).
We calibrate fy on an unseen user, referred to as Alice and
denoted Df;.nb’ who gives 3 demonstrations of picking up the
cup from the lip. In this case, the calibration demonstrations of
target user, Alice, were provided by one of the researchers who
also provided expert demonstrations in the training data. Both
the demonstrators and target user employ a heuristic strategy
to deterministically annotate u%_t for consecutive state pairs,
where u}, is the change in z-direction and y-direction of the
end effector from st to st*1. We calibrate to each held-out
trajectory, simulating the inputs to the assistive teleoperation
controller over time as though the user was controlling the
robot in real time.

Using , we see that uncertainty is highest at the
start and end of the interaction when the human has to give
the final inputs to orient the robot arm to face downward
to achieve their desired cup grasp (shown in right, Figure
3). Intuitively, Dypain contains higher disagreement amongst

the training data generators as they position the robot for
grasping. These critical states [22] are informed by the specific
user’s preferences. Without additional context and due to the
underspecified input, the robot cannot be certain about the
correct way to map the user’s low-DoF input to a high-DoF
action. Quantitatively, QR achieves 52.7% coverage on D, |
while achieves 92.6% coverage (where target coverage
is 90%). This result demonstrates that even for an end-user
providing in-distribution demonstrations, adaptively calibrat-
ing to unseen data is necessary for achieving informative
uncertainty bounds.

Takeaway 2: When users provide in-distribution low-
dimensional inputs on out-of-distribution calibration trajecto-
ries, can expand uncertainty when necessary but also
contract it for inputs that align with its training distribution.

We highlight this takeaway in the setting of 7DOF Goal-
reaching with diverse latent preferences. Here, Dy, con-
sists of 120 expert demonstrated trajectories, where half of
the demonstrators prefer the blue goal and half prefer the
red goal (see left, Figure 4). As in the cup-grasping domain,
demonstrators and target users employ a heuristic strategy
to deterministically generate u’, for consecutive state pairs,
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that concisely states:

(1 sentence) What is the broad challenge

(1-2 sentence) What is the research gap

(1-2 sentence) Key idea of the proposed work

(1 sentence) What is the outcome if I'm successful?
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Safe Navigation Using Language
Instructions

Motivation and contribution

Robots must operate safely when deployed in human environments, like the home. Current safe
control approaches assume that the robot knows a priori the set of states that are unsafe. While
this may make sense for some aspects of safety (e.g., by looking at a floor plan, the robot can
know where the walls of a room are and can compute a safety controller to never collide), other
aspects of safety are inherently personal and semantic, and can only be detected at deployment
time when the robot is interacting in a specific environment and with a specific person. For
example, a person may have an expensive hand-waven rug that they never want the robot to
traverse; or, the robot should never drive over spilled food on the ground (smearing it
everywhere), drive over a blanket (and then getting trapped) or go over tangled wires (making
them more tangled). Qur key idea in this work is to use human language feedback coupled with
the robot's RGB observations as a “constraint sensor” to detect in real time the person's safety
constraints. Additionally, the robot's safety controller needs to be updated efficiently online, after
each interaction where the robot infers a new constraint from the human'’s feedback. Thus, we
further propose an efficient online adaptation mechanism of the robot's safety control to abide
by the inferred human-centered constraints.

Potential Approach

High-level We first do based on the RGB and other visual
i ion and the | i ion. This constraint set is then used within a
reachability-based framework for safe planning and control.

Consframt inferance: For constraint inference, we first use an open vocabulary object
model ing similar to org/pdf/2305.11307). This
information is used as a textural description of the scene. This description, along with the
language instruction, is then provided to an LLM to identify the object categories that the robot
should avoid. For instance, if the language instruction is “Stay clear of the fragile objects,” then
ideally, the LLM should give us the object list that should be avoided, e.g., the glass vase, a
ladder, efc.
® ltis also to be seen if advanced Vision-Language object detectors, such as OWL-VT,
even need an LLM to parse the scene description or are just sufficient i
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Updating Robot Safety Representations
Online from Natural Language Feedback

Leonardo Santos'*, Zirui Li¥*, Lasse Peters’, Somil Bansal*f, Andrea Bajcsy®!
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Fig. 1: Natural language provides an intuitive interface for people to specify constraints they care about online, like restricted
areas behind caution tape or coffcc ‘pllls We leverage advances in vision-language models to interpret multimodal language

and image data, infer ly
at the project website: hitps:/cmu-intentla

Abstract—Robots must operate safely when deployed in
novel and human-centered environments, like homes. Current
safe control approaches typically assume that the safety con-
straints are known a priori, and thus, the robot can pre-
compute a corresponding safety controller. While this may make
sense for some safety constraints (e.g., avoiding collision with
walls by analyzing a floor plan), other constraints are more
complex (e.g., spills), i rsonal, context:

and update robot safety controllers online. Video results and code

/.

however, the current approaches often assume that the safety
constraints are known in advance, and thus, a safety con-
troller can be synthesized offline. While this approach may
be effective for static and well-defined constraints (e.g., walls
or fixed obstacles), it is insufficient in complex, human-
ccnlerod environments, where safety requirements are often

pe
and can only be identified at deployment time when the robot is
interacting in a specific environment and with a specific person
(e.g., fragile objects, expensive rugs). Here, language provides
a flexible mechanism to communicate these evolving safety
constraints to the robot. In this work, we use vision language
models (VLMs) to interpret language feedback and the robot’s
image observations to continuously update the robot’s represen-
tation of sal‘ely conslralnvs. With these inferred constraints, we

and For example, one may
not want a cleaning robot to drive through a workout area
during exercise, and a warehouse robot should avoid entering
areas temporarily blocked with caution tape (Figure 1).

In such cases, language provides a flexible communication
channel between the robot and the operator who can easily
describe constraints they care about (e.g., “Avoid the area
by caution tape”). In this work, we develop a

update a H ility safety online

via efficient t: mng i ‘Through si ion and
il the robot’s ability to
infer and respect hngung&based safety constraints with the
proposed approach.

I. INTRODUCTION

As robots are increasingly integrated into human environ-
ments, ensuring their safe operation is critical. Designing safe

for updating robot safety representations online
lhrough such natural language fecdback Our key idea is that

guage models (VLMs)
are not only a useful mlcrfdc: for constraint communication,
but they provide an easy way to convert multimodal data
observed online (RGB-D and language) into updated safety
representations. With this, the robot can detect hard-to-
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Motivation and contribution

Robots must operate safely when deployed in human environments, like the home. Current safe
control approaches assume that the robot knows a priori the set of states that are unsafe. While
this may make sense for some aspects of safety (e.g., by looking at a floor plan, the robot can
know where the walls of a room are and can compute a safety controller to never collide), other
aspects of safety are inherently personal and semantic, and can only be detected at deployment
time when the robot is interacting in a specific environment and with a specific person. For
example, a person may have an expensive hand-woven rug that they never want the robot to
traverse; or, the robot should never drive over spilled food on the ground (smearing it
everywhere), drive over a blanket (and then getting trapped) or go over tangled wires (making
them more tangled). Our key idea in this work is to use human language feedback coupled with
the robot’'s RGB observations as a “constraint sensor” to detect in real time the person’s safety
constraints. Additionally, the robot’s safety controller needs to be updated efficiently online, after
each interaction where the robot infers a new constraint from the human’s feedback. Thus, we
further propose an efficient online adaptation mechanism of the robot’s safety control to abide
by the inferred human-centered constraints.

Abstract— Robots must operate safely when deployed in
novel and human-centered environments, like homes. Current
safe control approaches typically assume that the safety con-
straints are known a priori, and thus, the robot can pre-
compute a corresponding safety controller. While this may make
sense for some safety constraints (e.g., avoiding collision with
walls by analyzing a floor plan), other constraints are more
complex (e.g., spills), inherently personal, context-dependent,
and can only be identified at deployment time when the robot is
interacting in a specific environment and with a specific person
(e.g., fragile objects, expensive rugs). Here, language provides
a flexible mechanism to communicate these evolving safety
constraints to the robot. In this work, we use vision language
models (VL.Ms) to interpret language feedback and the robot’s
image observations to continuously update the robot’s represen-
tation of safety constraints. With these inferred constraints, we
update a Hamilton-Jacobi reachability safety controller online
via efficient warm-starting techniques. Through simulation and
hardware experiments, we demonstrate the robot’s ability to
infer and respect language-based safety constraints with the
proposed approach.
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