

collab.me.vt.edu

Dylan Losey Virginia Tech | Fall 2024

This Lecture

- Introducing shared autonomy
- One flavor of solutions: predicting goals
- Another flavor of solutions: predicting actions

What is **shared autonomy**?

Consider a system with:

- State *s*
- Human input u_H

The system maps the human's input into a commanded action:

$$
a_H^t = \phi(s^t, u_H^t)
$$

Consider a system with:

- State *s*
- Human input u_H
- Assistive action a_R

The dynamics depend on both the human's input and the robot's assistance:

$$
s^{t+1} = f(s^t, a_R^t, \phi(s^t, u_H^t))
$$

Shared Autonomy: **Predicting Goals**

Assistive arms allow people
with disabilities and robots to work together to
perform tasks, like eating.

Predicting Goals

One approach is to think of shared autonomy as an **optimization problem** under uncertainty. The human knows the reward (i.e., the goal), and the robot needs to predict that goal, and take assistive actions towards the goal.

 $\mathcal{M} = \langle S, A_R, U_H, f, \phi, \theta \rangle$

Shared autonomy written as a Markov decision process (can be extended to POMDP)

Predicting Goals

 $\mathcal{M} = \langle S, A_R, U_H, f, \phi, \theta \rangle$

- S is the set of states
- A_R and U_H are the set of assistive actions and human inputs
- f and ϕ are the known dynamics (including the input mapping)
- $r(s, \theta)$ is the **reward function** that the robot should optimize for
- \cdot θ is the human's goal, which the robot does not know *a priori*

Imagine the human and robot are trying to reach for a **goal** in **free space**.

Step 1 (Predict): Infer which goal the human is trying to reach

Step 2 (Blend): Blend the human's commanded action with assistive action

 θ_1

 θ_2

Step 1 (Predict): Infer which goal the human is trying to reach

Step 2 (Blend): Blend the human's commanded action with assistive action

 θ_1

 θ_2

Step 1 (Predict): Infer which goal the human is trying to reach

- Start with prior $P(\theta)$
- At each timestep get (s, a_H)
- Update posterior:

$$
P(\theta | D) \propto P(\theta) \prod_{(s,a_H) \in D} P(a_H | s, \theta)
$$

Often people simplify this...

$$
s^0 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}
$$

$$
\theta_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix}
$$

$$
\theta_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
$$

$$
s^0 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}
$$

Naïve approach

Probability human wants a goal is inverse prop. to distance from goal

$$
P(\theta | D) \propto \frac{1}{\|\theta - s^t\|}
$$

Distance left to θ

$$
\theta_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
$$

$$
\theta_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix}
$$

$$
s^0 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}
$$

Naïve approach

Probability human wants a goal is inverse prop. to distance from goal

$$
P(\theta | D) \propto \frac{1}{\|\theta - s^t\|}
$$

 $P(\theta_2 | s^t) = 0.25$

$$
s^0 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}
$$

Better approach

Consider how efficiently human is moving towards the goal

$$
P(\theta | D) \propto \frac{\|\theta - s^0\|}{\|s^t - s^0\| + \|\theta - s^t\|}
$$

Distance gone so far
Distance left to θ

$$
\theta_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
$$

$$
\theta_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix}
$$

$$
s^0 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}
$$

Consider how efficiently human is moving towards the goal

$$
P(\theta \mid D) \propto \frac{\|\theta - s^0\|}{\|s^t - s^0\| + \|\theta - s^t\|}
$$

Better approach $P(\theta_2 | s^t) = 0.52$

Step 1 (Predict): Infer which goal the human is trying to reach

- Start with prior $P(\theta)$
- At each timestep get (s, a_H)
- Update posterior:

 $P(\theta | D) \propto P(\theta)$ $\exp(\beta \cdot \|\theta - s^0\|)$ $\exp(\beta \| s^t - s^0 \| + \beta \| \theta - s^t)$

One common simplification for free space goals

Step 1 (Predict): Infer which goal the human is trying to reach

Step 2 (Blend): Blend the human's commanded action with assistive action

 θ_1 θ_2

Step 2 (Blend): Blend the human's commanded action with assistive action

$$
a = (1 - \alpha) \cdot a_H + \alpha \cdot a_R
$$

Linearly blend the human and robot actions, the robot executes the overall action

Step 2 (Blend): Blend the human's commanded action with assistive action

$$
a = (1 - \alpha) \cdot a_H + \alpha \cdot a_R
$$

We know this…

What about the assistive robot action?

Step 2 (Blend): Blend the human's commanded action with assistive action

$$
a = (1 - \alpha) \cdot a_H + \alpha \cdot a_R
$$

$$
a_R = \sum_{\theta \in \Theta} P(\theta | D) \cdot (\theta - s^t)
$$

Assist towards weighted average goal

Given set of possible goals $\theta \in \Theta$ **Given** prior over goals $P(\theta)$ **For** each timestep t

- Measure state *s* and human input a_H
- **Predict** $P(\theta | D) \propto P(\theta) \prod_{(s,a_H) \in D} P(a_H | s, \theta)$
- Compute assistance $a_R = \sum_{\theta \in \Theta} P(\theta|D) \cdot (\theta s^t)$
- Take **blended** action $a = (1 \alpha) \cdot a_H + \alpha \cdot a_R$

Assistive arms allow people
with disabilities and robots to work together to
perform tasks, like eating.

Related Papers

- <https://journals.sagepub.com/doi/full/10.1177/0278364913490324>
- <https://journals.sagepub.com/doi/full/10.1177/0278364918776060>
- <https://dl.acm.org/doi/pdf/10.1145/3359614>

Shared Autonomy: **Predicting Actions**

Consider a system with:

- State *s*
- Human input u_H

The system maps the human's input into a commanded action:

$$
a_H^t = \phi(s^t, u_H^t)
$$

The robot autonomy generates trajectory segments

Predicting Actions

With assistive applications in mind, the human's input is often **low-dimensional**. But the robot the human is trying to control is **high-dimensional**. Instead of assuming access to a discrete set of goals, can we enable the human to seamlessly control their complex and dexterous robot arm?

$$
a_H = \phi(s, u_H)
$$

These approaches learn a mapping from states and inputs to commanded robot actions

Predicting Actions

$$
a_H = \phi(s, u_H)
$$

- s is the current state (i.e., joint position $+$ any camera images)
- u_H is the human's low-dimensional input (i.e., 2-DoF joystick)
- ϕ is the unknown teleoperation mapping from inputs to actions
- a_H is the **high-dimensional** action the human wants the robot to take

 (s, a)

 (s, u_H)

To learn the mapping $\phi(s, u_H) \rightarrow a_H$ we will use a **conditional autoencoder**.

To learn the mapping $\phi(s, u_H) \rightarrow a_H$ we will use a **conditional autoencoder**.

To learn the mapping $\phi(s, u_H) \rightarrow a_H$ we will use a **conditional autoencoder**.

 $\varphi(s, a) \rightarrow z$

The decoder is *conditioned* on state *s*. Take *s* from input and pass directly to decoder.

To learn the mapping $\phi(s, z) \rightarrow a$ we will use a **conditional autoencoder**.

Once trained, we control the robot using only the decoder to get action a

Our idea. We embed high-dimensional and complex tasks to low-dimensional **latent representations**. At runtime users select the latent representation with a joystick, which then maps to high-dimensional and meaningful behaviors.

When user presses the joystick to the right, the robot decodes this latent input to help reach the spatula

Our idea. We embed high-dimensional and complex tasks to low-dimensional **latent representations**. At runtime users select the latent representation with a joystick, which then maps to high-dimensional and meaningful behaviors.

When robot is holding the spatula and user presses the joystick down, robot decodes this latent input to help automate a stirring motion

Offline collect dataset $D = \{(s^1, a^1), ..., (s^N, a^N)\}$ Initialize models:

- Encoder $\varphi(s, a) \rightarrow z$
- Decoder $\phi(s, z) \rightarrow a$

Train encoder and decoder to minimize loss:

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{(s,a) \in D} ||a - \phi(s, \varphi(s, a))||^2
$$

Models have weights θ Error between actual and predicted

Online take trained decoder $\phi(s, z) \rightarrow a$

At each timestep t:

- Observe state *s* and human input u_H
- Treat $z = u_H$ as the latent action
- Get decoded action $\phi(s, z) \rightarrow a_H$
- [*Optional*] Use predict and blend to assist human
- Transition to next state

(1) add eggs

Latent Action

R LA + SA (ours)

Related Papers

- <https://link.springer.com/article/10.1007/s10514-021-10005-w>
- <https://dl.acm.org/doi/full/10.1145/3651994>

This Lecture

- Introducing shared autonomy
- One flavor of solutions: predicting goals
- Another flavor of solutions: predicting actions

collab.me.vt.edu