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So far... all about human behavior prediction

planning-based

future human action (or state)
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¢
P(x%) » ulttl —o Z{(Xt;uztf)}Z:oJ

A J N
\ *don’t always need/have action labels

In general, history of human state,
robot state, other agents, etc.

pattern-based

(Learn reward Optimize reward to predict
(//IRL //) (//RL 77 / IIOC //)
| |Find Rj; 0:t. g) = Optimize(R?
> P(x"*; 0) = Optimize(Ry)
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+ can be more stable OOD
- high inductive bias can miss real aspects
of behavior

- N
Fit prediction model directly via supervised learning
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[ Findy P(x%%; 0) with D ]

\- J

+ more expressive to real behavior nuances
- brittle to OOD interaction



RSS, 2021

On complementing end-to-end
human behavior predictors with planning

Liting Sun, Xiaogang Jia, and Anca D. Dragan
University of California, Berkeley

Abstract—High capacity end-to-end approaches for human
motion (behavior) prediction have the ability to represent
subtle nuances in human behavior, but struggle with robust-
ness to out of distribution inputs and tail events. Planning-
based prediction, on the other hand, can reliably output
decent-but-not-great predictions: it is much more stable in
the face of distribution shift (as we verify in this work), but
it has high inductive bias, missing important aspects that
drive human decisions, and ignoring cognitive biases that
make human behavior suboptimal. In this work, we analyze
one family of approaches that strive to get the best of both
worlds: use the end-to-end predictor on common cases, but
do not rely on it for tail events / out-of-distribution inputs —
switch to the planning-based predictor there. We contribute
an analysis of different approaches for detecting when to
make this switch, using an autonomous driving domain.
We find that promising approaches based on ensembling or
generative modeling of the training distribution might not
be reliable, but that there very simple methods which can
perform surprisingly well - including training a classifier to
pick up on tell-tale issues in predicted trajectories.

I. INTRODUCTION

Robots that need to share their environments with hu-
mans learn predictive models of human behavior, which
they use to generate their own behavior in response.

Test data

Tail event
(vehicle stopped)

1o

oty 1)
1 1\11%
Tf“”

Out-of-distribution

In distribution event (unseen exit)
(captures nuance)

Fig. 1. We analyze methods for using an end-to-end predictor on
common cases (gray region), and relying on planning-based prediction
outside of that (orange region).

level, or anything else that influences where humans go
that would be otherwise very challenging to explicitly
write down.

But one challenge that such high capacity, end-to-
end models face is their performance in the face of
distribution shift or tail events. Our understanding of the
nuances of this challenge is still evolving, but there seem
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Mainprice, Jim, Rafi Hayne, and Dmitry Berenson. "Predicting human reaching httpS: / /Www.youtube.com /watch?v=w1 651.7ZtDws

motion in collaborative tasks using inverse optimal control and iterative re-
planning." International Conference on Robotics and Automation (ICRA), 2015.

PREDICTING HUMAN REACHING
MOTION IN COLLABORATIVE TASKS

USING INVERSE OPTIMAL CON

ROL

AND ITERATIVE RE-PLANNING
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CoRL, 2023

ManiCast: Collaborative Manipulation
with Cost-Aware Human Forecasting

Kushal Kedia Prithwish Dan Atiksh Bhardwayj Sanjiban Choudhury
Cornell University Cornell University Cornell University Cornell University

Abstract: Seamless human-robot manipulation in close proximity relies on ac-
curate forecasts of human motion. While there has been significant progress in
learning forecast models at scale, when applied to manipulation tasks, these mod-
els accrue high errors at critical transition points leading to degradation in down-
stream planning performance. Our key insight is that instead of predicting the
most likely human motion, it is sufficient to produce forecasts that capture how
future human motion would affect the cost of a robot’s plan. We present MANI-
CAST, a novel framework that learns cost-aware human forecasts and feeds them
to a model predictive control planner to execute collaborative manipulation tasks.
Our framework enables fluid, real-time interactions between a human and a 7-DoF
robot arm across a number of real-world tasks such as reactive stirring, object han-
dovers. and collaborative table settine. We evaluate both the motion forecasts and




Robot moves directly to
the handover spot




What type of

{:P (xO:t) N ulg+1:T

\

J

have we studied so far?

planning-based
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pattern-based
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Learn reward  Optimize reward to predict
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Regress the prediction model directly
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What other kind of human data (or feedback)
can we leverage?



What other kind of human data (or feedback)
can we leverage?

Demonstrations Corrections

Comparisons “Initial state”
(preferences) (1.e., preferences implicit in the state of the world)
Proxy reward Language

Off-switch ... (and more)



What other kind of human data (or feedback)

[1] Andrew Y Ng and Stuart |
Russell. “Algorithms for inverse

can we leverage?

reinforcement learning.” ICML, 2000.

[2] Wirth, Christian, et al. "A survey
of preference-based reinforcement
learning methods.” JMLR, 2017

[3] Hadfield-Menell, Dylan, et al.

Demonstrations

Comparisons
(preferences)

Proxy reward

"Inverse reward design." Neurips 2017.

[4] Hadfield-Menell, Dylan, et al.
"The off-switch game." Workshops
at AAAI, 2017.

Off-switch

[5] Bajcsy, Andrea, et al. "Learning robot
objectives from physical human
interaction." CoRL, 2017.

Corrections

[6] Shah, Rohin, et al. "Preferences implicit
in the state of the world." ICLR, 2019.

“Initial state”

(1.e., preferences implicit in the state of the world)

Lan g ua ge [7] Matuszek, Cynthia, et al. "A joint

model of language and perception for
grounded attribute learning." ICML, 2012.

... (and more)
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[Haddadin, 2008]
[Haddadin, 2006]
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[Hogan, 1985]
[Haddadin, 2006]
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e strategies,
the robot resumes its original behavior! -
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Physical human corrections
provides about the
function

Bajcsy, Andrea, et al. "Learning robot objectives from physical human
interaction." Conference on robot learning. PMLR, 2017.
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Formalizing Reacting to pHRI

State
Action
Observation

Dynamics

Reward function

Robot Human
X
Ur
Ug

xt = f(xt uk + uf)

r(x, Ugr, Uy, 0)
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Formalizing Reacting to pHRI

State
Action
Observation

Dynamics

Reward function

Robot Human
X
Ur
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Formalizing Reacting to pHRI

Robot Human
State X
Action Up
Observation u H
Dynamics xt+1 — f(xt, ulg -I- ult-l)
Reward function T(x, Up, Uy, 0) — 0T¢(x, Up, U,H) — A”uH ”2
?/Il;ifélvation P(UH |x, Up; 6) o eQ(x,uR+uH;9)



Formalizing Reacting to pHRI

State
Action
Observation

Dynamics

Reward function

Observation
Model

Robot Human
X
Ur
Ug

xt = f(xt uk + uf)
r(xl Ugr, Uy, 0) — 0T¢(x’ uRJuH) o A”qulz

P(uy|x, ug; 8) o« e *urttn:0)
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Issues:
(1) Finding uy through POMDP planning is challenging
(2) Computing Q-values is challenging
e QX111 +uR;6)
feQ(x, +ug;0)

PCuy lug,x;0) =
(3) Updating continuous distributions over b(0) is challenging

6 eR 6

Goal: Make 3 approximations to get online solution!
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/Estimation & Control\

Separate inferring 8 from

Q)mputing optimal policu
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Online Learning of Robot Objectives from pHRI

 MAP )

Use maximum a

Separate trajectory

\ optimization and
tracking

posteriori estimate instead
of b(0) /




Online Learning of Robot Objectives from pHRI

Separate inferring 8 from
computing optimal policy

/Planning & Control\

| |
= .0 .1
= Up, Ug, ...

 MAP )

Use maximum a

Separate trajectory

\ optimization and
tracking

posteriori estimate instead
of b(0) /
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[Littman et al, 1995]

CONTROL 15 = argmax EpogyQ(x, ug; 0)]
UR

0
/Estimation & Control\ SENSE  Up
H E u* ESTIMATION  b(8) o P(ud | ul, x; 8 )b°(6)
Separate inferring 6 from t=1 ‘ b'(6) __J X Q

Qmputing optimal policu ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

CONTROL 1

= argrrlll?{x Ep1g)[Q(x, ug; 0)]



CONTROL 115 = argmax Ejog)[
UR

— 1
Separate inferring 6 from t=1 ‘ b~(0) __J X Q
Qmputing optimal policu --------------------------------------------------------------------------------------------------------------------------------

CONTROL u}e -

0
/Estimation & Control\ SENSE ~ Up
H U % ESTIMATION  bh1(0) b°(6)

argnlllzri{x Ep1oyl
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/Estimation & Control\

Separate inferring 8 from
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/Planning & Control\
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Online Learning of Robot Objectives from pHRI
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CONTROL 115 = argmax Ejo gy [
UR

/Planning & Control\

0 1
uR, uR, e e

Separate trajectory

optimization and
tracking
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CONTROL u}g = argmax [EbO(Q) 1Q(x,ug; 0)]
UR

/Planning & Control\

PLAN $p = argmax 9" (§)

0 1 CONTROL

0 -0 -0 0
Up, Up, ... Up = BR(xR —X ) + KR(xR - xO)

Separate trajectory ‘
K optimization and ‘

tracking
N
o

xp—"
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\_

/Planning s Control\

0 i |

Separate trajectory
optimization and
tracking

Up, Ug, ...

PLAN £9 = arg max 0" d(§)
CONTROL up = Bg(xp — %°) + Kr(xp — x9)
SENSE  Up
ESTIMATION  h1(6) o b°(0)
/

P(up | up,x;0) e

Q: What is £5? P(£21£9; 0) o« eRCHsri0)
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Q: What is &%;?

R

0 0,
P(£01€9; 0) o eRCH RO
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of et Iwwen Peduct
Q: What is &%;? P(f]?{lfg, 0) « eR(é’%,é;%;G) o tffueud Juver Hoducts

<7t 677 SIITS’L

{AQJOI,IZ/: CQ—Lo\‘ CQ“O) =\ 00 I a‘b[lq— , uqﬂ“l 7\
1 Ck-cul:@-a\TCo\—c) = (3O

v QO_LL_‘L : <%o 9 3377[\ '71 frﬂa&zae doyn7o a

u b (s

See Anca Dragan’s course notes: CS 287H: Algorithmic HRI

B=agmn@R-OTER-O g0 g0y

s.t. &(8) =&2(8) +uyp
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Q: What is &}?

[Dragan, 2015]
[Losey, 2017]

0
H

0 0,
P(£01€9; 0) o eRCH RO

= arg mgn(fg —OTAER = &)

s.t. &(8) =&2(8) + uy,

& =&+ AT [ug

Qaa + £9,,5,7 =5 A5, ke o oo

u b (s
I

dtfoun: UCQ)e > > 1, -q

e QL _ %4
KVLO_\\ ]K WSl Laij?v] I%%Z

—

gy = CK%‘*@ (kg49) ,,% KKg .
V(\Mﬂ SR (PR TSI P *Q"‘Ie Yen T
V U= A9+ tudpoind flrs)

[ ]

See Anca Dragan’s course notes: CS 287H: Algorithmic HRI
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o 0|0 R(£9,3:6) oTo(£)-|e5-€8)|”
Q: What is {72 P($plSp; 0) < e™SHASRY) P(fgkgi 9) X e H H™SR

Simplified observation model

t
SR
t=28
— 0 -
0 _ ¢0 —1
Sp=¢r T A U?[
[Dragan, 2015] - 0 -

[Losey, 2017] 66



PLAN ¢R = arg max 6" (¢)
e ~ CONTROL ) = Bp(xp — x°) + Kg(xp — x9)
Planning & Control
: SENSE ~ Up .
= .0 .1 :
E UR, UR, - DEFORM ¢ = &g + A7" |up)
: "
Separate trajectory
optimization and 1 0120, 0
N acking ESTIMATION b (8) o P(¢71|€R; 6)b°(6)




PLAN Ep = arg max 8T d (&)
0 _ =0 -0 0 0
Planning & Control
. SENSE ~ Up .
: ud, uk, ... 0 o nE
. DEFORM £ = &3+ A~ [ud
- "
Separate trajectory
optimization and
k tracking ESTIMATION




/Estimation & Control\

Separate inferring 8 from

Q)mputing optimal policu

/Planning & Control\
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Separate trajectory

Online Learning of Robot Objectives from pHRI

 MAP )
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v
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Use maximum a

k optimization and
tracking

posteriori estimate instead
of b(6) /
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C MaP ) 6% = arg max
/I\ = arg méixP(fH | ¢ 0)P(6)
v
T LT o)~ ~8|
= arg max P(6)
Use maximum a

posteriori estimate instead

One last approximation (I promise) ©

70



 MAP ) 6" = arg max

PN = arg max P(&y; | &x; 0)P(6)

i 2

T 0T P2 |61 —ER]

= arg max P(6)
Use maximum a
posteriori sfs’lcjizr;?te instead/
Laplace’s Method

f ef(x) dx f(x) is twice dif ferentiable

y

http://www.inference.org.uk/mackay/itprnn/ps/341.342.pdf

(1) 27 Order Taylor Series Expansion around optimum
(2) Get Gaussian Integral and closed form solution!
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http://www.inference.org.uk/mackay/itprnn/ps/341.342.pdf

C MaP ) 6% = arg max
/I\ = arg méixP(fH | ¢ 0)P(6)
v
T LT ()-8
~ arg max P(0)
Use maximum a

posteriori estimate instead

2
= arg max LOT (@) -A|len-8)| P(6)
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Use maximum a
posteriori estimate inste

of b(6)

ad/

log +

0T (P (¢p) —AHfH—€°H2
= arg meaxe .

P(0) = o 7a10-0°IP

= arg max o7 (®(&y) — P(&R)

Take gradient and Vg= 0

61 =0 +a(67(4(5) ~ cb@R)))

P(6)

simplity < = arg max 0T (P (¢y) — P (ER)) — A ||9( R||2 +log(P(6))

|2

0—0|
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Use maximum a
posteriori estimate inste

of b(6)

ad/

PLAN £9 = arg max o7 d(§)
CONTROL up = BR(xg — 5c°) + Kp(xp — x9)
0
SENSE Up 0 -

DEFORM ép =& + A7 |uf)

ESTIMATION @4 =69 %4-1t (GT(CD(fH) ~ CID(ER)))



Online Learning from pHRI

Plan robot trajectory
from start to goal

S < argmax6°®({)
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Online Learning from pHRI

Sense human’s
applied force

U

t
\”H
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Online Learning from pHRI

Deform to get human’s
preferred trajectory

S =Sr+ A uy

77



Online Learning from pHRI

Update robot objective

Ot « 0 + a(P(&f;) — P(EE))



Online Learning from pHRI

Replan with new objective

L« arg max Ot 1 (&)

79



Learning vs. QMDP vs. No Learning.

Original robot trajectory

== [mpedance
— QMDP

Learning



Learning vs. QMDP vs. No Learning.

=== [mMpedance m— (QMDP Learning
1 1
—~~
=
<\Q_/ 08 I 1 & 08 L
V) L -
ﬁ O 4 L - -?’E
R 0. = 04}
> s
5 0.2} 1 B
~ 7 0.2
0 n i "
1 2 3 4 5 0

Timestep



User Study

* 3 household manipulation tasks in a shared workspace with

* The robot moves from start to goal pose with an

Task 1: keep cup Task 2: stay close to Task 3: don’t go over
upright table .)

Optimal trajectory

82



Hypotheses

H1. Learning significantly decreases ,
, and cumulative trajectory

H2. Participants will better know if the robot
, feel less interaction , perceive the
robot as more , and believe the robot is more
in the learning condition.



Task 1: keep the

cup upright

84



original

desired

Task 2: stay close to the table



Task 3: don't move over the laptop

86



Results - Objective

Performed factorial repeated measures ANOVA

Average Cost Across Tasks

100 @
B Impedance - :.
80 B Learning .*
o * B Desired g
S0 | * o
© :
> . f‘@ -
240 4
2 *
@
20
0
Cup Table Laptop ‘
Task

* = p<0.0001



Results - Objective

Performed factorial repeated measures ANOVA

1000

=800

3

= 600

5

1=

=400

E

S 200
0

Average Total Human Effort Average Total Interaction Time
B Impedance 16 B Impedance
Bl Learning o 14 Bl Learning
s o 12
* | | g 10 *
| | = 8 |
~
O
EEm— g §
< 4
=
2
0
Cup Table Laptop Cup Table Laptop
Task Task

* = p<0.0001
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Results - Subjective

Performed one-way repeated measures ANOVA

The robot did not collaborate with me to complete the task.

Questions Cronbach’s o | F(1,9) | p-value
%ﬁ By the end, the robot understood how I wanted it to do the task.
=
S | Even by the end, the robot still did not know how I wanted it to do the task.
= 0.94 118.56 | <.0001
= | The robot learned from my corrections.
=
£ | The robot did not understand what I was trying to accomplish.
= | I had to keep correcting the robot.
5 P : 0.98 85.25 | <.0001
2 | The robot required minimal correction.
.E [t was easy to anticipate how the robot will respond to my corrections. 0.8 0.06 0.82
g The robot’s response to my corrections was surprising. 0.8 0.89 0.37
< | The robot worked with me to complete the task.
& “omp 0.98 55.86 | <.0001
<
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What other kind of human data (or feedback)
can we leverage?

Demonstrations Corrections

Comparisons “Initial state”

(preferences) (1.e., preferences implicit in the state of the world)
Proxy reward Language
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Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

Correcting Robot Plans with Natural Language Feedback

Pratyusha Sharma?$, Balakumar Sundaralingam?, Valts Blukis*, Chris Paxton?,
Tucker Hermans*Y, Antonio Torralbal, Jacob Andreas ¢, Dieter Foxt

i NVIDIA, § MIT, ! University of Utah, t University of Washington

Motion Planner

Motion Planner *(with language feedback cost)*

Correction: By adding constraint
Predicted Cost

¥

LY

o 7 Top-down view

Stay away

from the
yellow bottle.

Go from under
the bottle of
bleach.

Fig. 1: Robots often fail to do what we want. This can happen for many reasons including mis-specification of goals, failure to anticipate what satisfying
plans will do, and because optimization sometimes fails. We show how language can be used to update the underlying cost of a planner to improve task
performance. Our approach can use language to specify corrections by a) the addition of constraints or b) specifying intermediate sub-goals for the planner .

Abstract—When humans design cost or goal specifications for
robots, they often produce specifications that are ambiguous,
under-specified, or beyond planners’ ability to solve. In these
cases, corrections provide a valuable tool for human-in-the-loop
robot control. Corrections might take the form of new goal spec-
ifications, new constraints (e.g. to avoid specific objects), or hints
for planning algorithms (e.g. to visit specific waypoints). Existing
correction methods (e.g. using a joystick or direct manipulation of
an end effector) require full teleoperation or real-time interaction.
In this naner we explore natural lancuace as an exnressive and

This objective function takes the form of a cost function in
an optimization-based planning and control framework for
manipulation. Our use of language contrasts with previous
work where corrective input of robot behavior came from
joystick control [36, 33], kinesthetic feedback [27, 19, 6], or
spatial labelling of constraints [45, 9]. Kinesthetic and joystick
feedback allows for fine-grained control, but typically requires
prior expertise and undivided attention from the user, reducing
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Physical Corrections Language Corrections

A

4 N

Go from under

the bottle of
bleach.
- J/
Bajcsy, Andrea, et al. "Learning robot objectives from Sharma, Pratyusha, et al. "Correcting robot plans with natural
physical human interaction." CoRL, 2017. language feedback." RSS, 2022.
robot state &
trajectory observation  \iNy e ohts

\ \ |
R(&:0) =0T ¢(8) R((q,0),L;0) =

I T

hand-designed features language

position & velocity
reward map
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Language Corrections
Online, predict R(.) given specific L

Environment . GT Trajectory : ,
Predicted cost Predicted mask Mask*Cost
+Start location instaction (Cost map)

Go to the
bottom of
Offline, train R(.) the
Cheeze-It
. box.
Training Data
Go to the right of . Go .
the sauce. behind
. + Start location: = [ 200 the blue
(1700,270) S colored
Goal location: 2 - .
(350,2000) S 150 - container.
S
Go to the left of §
the white bottle. § 100 Go to the
Start location: i‘ight Of
(300,1900) 50 theS am
Goal location: P
(1500, 60) can.
0
robot state & language (L) reward
observation .
2l Go in
front of
R thered

box.



Benefits of Natural Language Feedback(1)

Same correction can be applied to multiple environments in need:

“Hey robot! Go 1o the left of the bleach first,”




Can we unify learning from diverse feedback types?

Demonstrations Corrections

Comparisons “Initial state”

(preferences) (1.e., preferences implicit in the state of the world)
Proxy reward Language

Off-switch ... (and more)



