
Lecture 12
Retrospective & frontiers

16-886 Special Topics | Models & Algorithms for Interactive Robotics

intent
R O B O T I C S  L A Babajcsy@cmu.edu



2

Last Time

[✓] latent-space safety 
[✓] (guest lecture) OOD in era of large models

This Time

[ ] final project + presentation logistics
[ ] retrospective & frontiers!
[ ] course eval survey
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At a glance

Final presentations due 4/21
* All presentation slides must be uploaded

Presentation talks   4/22 & 4/24

Final report due    5/1 



Final Report (30% | May 1)

Conference-style paper

~6 pages 

IEEE templates in LaTeX and 
Overleaf (click image on right to go 
to Overleaf template)

https://www.overleaf.com/latex/templates/ieee-conference-template/grfzhhncsfqn
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Final Presentation (10% | April 22 & April 24)
Conference-style talk

For groups of 1:
 10 minute presentation
 + 5 minute Q&A / transition 

For groups of N:
 20 minute presentation
 + 5 minute Q&A / transition

Whole must be class present and in-person! 



Presenter(s) Presentation Time

Bowen Jiang, Yilin 
Wu, Weihao 
(Zack) Zeng 

20 min

Samuel Li 10 min

Sidney Nimako – 
Boateng 

10 min

Xilun Zhang 10 min

Presenter(s) Presentation Time

Jehan Yang, 
Eliot Xing 

20 min

Yumeng Xiu 10 min

Kavya 
Puthuveetil 

10 min

Day 1 (April 22) Day 2 (April 24)
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Distill what is the key 
idea and key takeaways 

On technical communication 
(presentations, writing,…) 

Motivate what you are 
studying clearly 



On technical communication 
(presentations, writing,…) 

Context & motivation

Problem statement / challenge

Why it is hard

Key idea (i.e., the fix!)

Formulation / instantiation / setup

Results (empirical, theoretical) 

Summarize key idea, 
takeaways, implications 



Heuristics for good presentations

Sparse; figures over text!

• Increased 
information

• Increased viewer 
effort

• Increased 
information

• Decreased viewer 
effort

focus on speaker focus on slide 



Heuristics for good presentations

Be visual (e.g., make graphs and break them down) 



Heuristics for good presentations

If using equations, explain them and build them up

max
!
min
"
∇#𝑉 𝑥, 𝑡 $𝑓(𝑥, 𝑢, 𝑑) +

𝜕𝑉
𝜕𝑡

= 0 

HJ Reachability

max
!
min
"
∇#𝑉 𝑥, 𝑡 $𝑓(𝑥, 𝑢, 𝑑) +

𝜕𝑉
𝜕𝑡

= 0 

HJ Reachability

Player 1 Player 2



Heuristics for presentations
Use useful titles

Results



Academic-Specific Resource



Retrospective & Frontiers



[Waymo, 2023] [Ren, AZ et al., 2023]

[Kedia et al., 2023] [DeepMind, 2023]

AI is enabling autonomous agents to interact with people at scale



This widespread human—AI interaction has also 
increased questions about modeling interaction 

and raised safety & alignment concerns ….



feedback loop

Interaction means there exists a feedback loop 
between human stakeholders and autonomous robots 



feedback loop

Present at:Influences:

representations
robot decisions

human responses

training
fine-tuning
deployment



formalisms inspired by control & dynamical systems to model 
human—robot/AI feedback loops influenced by robot decisions

control systems

AI

feedback loop

In this class:



𝜙!
robot’s 
representation

human’s 
representation𝜙"



[Autoevolution, “Tesla with FSD Beta Avoids Plastic Bag, Some People Mistake It for a Good Thing“]



Robot’s and end-user’s representations are misaligned!

Crushable Bag Obstacle



[Ren, AZ et al., 2023]

unsafe to put metal in microwave



Bajcsy*, A. et al. "Confidence-aware motion prediction for real-time 
collision avoidance." IJRR 2020.

Bobu, A. et al. "Learning under misspecified objective spaces." CoRL 2018.

Tian, R. et al. "What Matters to You? Towards Visual Representation 
Alignment for Robot Learning.” ICLR 2024.

Detecting Representation Misalignment

𝜙!

𝜙"

Aligning Robot Representations

Misalignment Detection: 
No unintended learning

No Detection: 
Unintended learning

𝜙!

Visual Representation Alignment

max
"!

𝑃(	 ∣ 𝜙#)≻ ≻

𝜙#∗𝜙#%

Confident Online Learning from Physical Corrections

Confidence—aware Human Behavior Prediction Aligning Pre-trained Vision Models w/ Human Feedback

Bobu, A. et al. “Feature Expansive Reward Learning: Rethinking 
Human Input.” HRI 20201

New types of human feedback for representation alignment



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!
robot’s policy

human’s policy

physical action, preference 
feedback, text prompt…

physical action, generations 
for human to rank, …



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!
robot’s policy

human’s policy

Game-Theoretic & Data-Driven Interaction Models

Kitani, et al. Activity Forecasting. ECCV 2012

Peters, L. et al. ”Contingency Games for Multi-Agent Interaction” RA-L, 2024.

N-Player Dynamic Games

Deep Human Behavior Prediction

RLHF / DPO / CPL

Hejna, J. et al. “Contrastive 
Preference Learning”. ICLR 2024

Inverse Reinforcement Learning

MultiPath, WaymoBajcsy et al., “Learning from pHRI”, CoRL 2017

Learning from Corrections



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!

𝑧456 = 𝑓(𝑧4 , 𝜋7 , 𝜋8)
closed-loop dynamics

𝑧 ≔ [𝑠, 𝜙# , 𝜙!]

true state + agent representations



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!

𝑧456 = 𝑓(𝑧4 , 𝜋7 , 𝜋8)
closed-loop dynamics

Safety Analysis &
 Runtime Safety Filtering

fundamental problem:
present actions which do not 
appear to violate constraints
can still steer the system to 

states of irrecoverable failure 
in the future. 



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!

𝑧456 = 𝑓(𝑧4 , 𝜋7 , 𝜋8)
closed-loop dynamics

Safety Analysis &
 Runtime Safety Filtering

Learning Safety from Demos 
& Latent-space Safety

Tian, R. et al. "Safety assurances for human-robot interaction via 
confidence-aware game-theoretic human models." ICRA 2022.

Wabersich, K. P., et al. "Data-driven safety filters” 
Control Systems Magazine. 2023.

Game-theoretic Runtime Safety Filters

Computationally scalable & data-driven safety

Chakraborty, K. and Bansal, S.. "Discovering Closed-Loop Failures of 
Vision-Based Controllers via Reachability Analysis." RA-L 2023

Closed-loop Failures of Vision-based Controllers

Using multi-task data to improve 
constraint inference.

Kim, K, et al. "Learning shared safety constraints from multi-
task demonstrations." NeurIPS 2024.



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!

𝑧456 = 𝑓(𝑧4 , 𝜋7 , 𝜋8)
closed-loop dynamicsSafety Analysis &

 Runtime Safety Filtering Learning Safety from Demos 
& Latent-space Safety

Game-Theoretic & Data-Driven 
Interaction Models

Detecting Representation 
Misalignment

Aligning Robot 
Representations ….and more!



ML / AI Control Systems
(Safety) (OOD)

Safety monitoring coupled with 
action (mitigation)

Limited to low-D representations 
& behavior models…

Rich context & representations

Safety at a component-level & 
decoupled from mitigation 

Multi-agent feedback loops Expressive behavior generation, 
multimodal human feedback



ML / AI Control Systems

“System-level” 
approach to 

human-AI safety

(Safety) (OOD)

Safety monitoring coupled with 
action (mitigation)

Limited to low-D representations 
& behavior models…

Multi-agent feedback loops

Rich context & representations

Safety at a component-level & 
decoupled from mitigation 

Expressive behavior generation, 
multimodal human feedback
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2022
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What does this frontier look 
like in interactive robotics?



𝜙!

𝜙" 𝜋": 𝜙" → 𝑎"

𝜋!: 𝜙! → 𝑎!

closed-loop dynamics Operational life cycle!



[Waymo, 2023] [Ren, AZ et al., 2023]

[Kedia et al., 2023] [DeepMind, 2023]



𝒂! = 𝜋"(𝑠, 𝑃# , 𝐶)
Robot Planner

state history 
& context

Human Behavior Predictor

𝑃#: (𝒔, 𝐶) ↦ -𝒂$

predicted future 
human actions

𝒂%~	𝜋%
Real Human Behavior

cost-based planner: 𝜃	is learned cost fn
generative planner: 𝜃 is NN weights



𝑃#: (𝒔, 𝐶) ↦ -𝒂$



𝜋"(𝑠, 𝑃# , 𝐶) Real Human Behavior

Which prediction failures “mattered” during deployment interactions? 
Can we improve our interaction models over repeated interactions?

𝒂%~	𝜋%



All deployment data

Source: https://twitter.com/djbaskin

Natural growth over time… …& human interaction distribution shifts



All deployment data

𝑃9 𝑃9:
limited model capacity (esp. 
if you want fast inference)



All deployment data

Prediction errors
𝑃2

𝑃9 𝑃9:
may still waste capacity on 
learning irrelevant behaviors

𝒂!

4𝑎!
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Mis-prediction DOES yields system-level failure Mis-prediction does NOT yield system-level failure

Both mis-predictions have the same L2 prediction error!

Farid, Alec, et al. "Task-relevant failure detection for trajectory predictors in autonomous vehicles." CORL 2023.



Source: https://www.youtube.com/watch?v=7s4-DVIs6Pk    c



Google



All deployment data

Prediction errors

“System-level” errors

𝑃2

𝜋;

Sinha, Rohan, et al. "A System-Level View on Out-of Distribution Data in Robotics." arXiv preprint (2022).



Prediction errors
𝑃2

Q1) How to formalize “system-
level” interaction errors?

All deployment data

Q2) Value this data holds for 
incrementally improving? 

“System-level” errors
𝜋;

𝑃9 𝑃9:



Regret precisely characterizes the degree to which 
prediction errors 𝑃9 degraded robot performance 𝜋;

Idea 1

Nakamura, K. et al. “A General Calibrated Regret Metric for Detecting and Mitigating Human-Robot Interaction Failures”. (under review) 2024. 



Regret

best robot decision 
in hindsight

robot’s reward w/ parameters 𝜃

observed human behavior, joint 
state, scene contextexecuted robot 

decision

max
𝒂!

𝑅"
! 𝒂!, 4𝒂$":$# , 5𝒔, 𝐶 − 𝑅"

!(4𝒂!, 4𝒂$":$# , 5𝒔, 𝐶)
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This mis-prediction would cause high regret! This would not – robot would still do the same thing.

max
𝒂"

𝑅67 	 − 𝑅67(	 )𝒂7 , ,

In hindsight, should have slowed down! => High regret

max
𝒂"

𝑅67 	 − 𝑅67(	 )𝒂7 , ,

In hindsight, would have still done => Low regret



Deployment Context A Deployment Context B

Standard regret can be mis-calibrated between disparate deployment contexts 



evaluating the quality of a robot decision by its
likelihood rather than its absolute reward
calibrates regret across disparate contexts

Idea 2



max
𝒂!

𝑅"
! 𝒂!, 4𝒂$":$# , 5𝒔, 𝐶 − 𝑅"

!(4𝒂!, 4𝒂$":$# , 5𝒔, 𝐶)

Regret



Calibrated Generalized Regret

params shared with planner

likelihood model for counterfactual 
probability of robot decisions

max
𝒂!

𝑃" 𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶 − 𝑃"(4𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶)



Calibrated Generalized Regret

no need for explicit 
reward model! 

probability scales anomalies 
w.r.t. deployment context

max
𝒂!

𝑃" 𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶 − 𝑃"(4𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶)



Closed-Loop Simulation on 100 Held-out Scenes from Nuscenes

𝑃9(𝒂<!:<" ∣ 𝒂>, 𝒔, 𝐶)

AgentFormer [Yuan et al., 2021]

𝒂> = 𝜋;(𝑠, 𝑃9 , 𝐶)

Tree Policy Planning 
[Chen et al., 2023]

BITS Simulator [Xu et al. 2023]



Calibrated Deployment Regret

“System-Level” 
Prediction Failures
(top p-quantile)

Attempt to Influence

Stopped Truck

low high

Nominal Interaction

C
ou

nt

Closed-Loop Simulation on 100 Held-out Scenes from Nuscenes

max
𝒂"

𝑃' 𝒂( ∣ 8𝒂)#:)$, 9𝒔, 𝐶 − 𝑃'(8𝒂( ∣ 8𝒂)#:)$, 9𝒔, 𝐶)



Calibrated Generalized Regret

no need for explicit 
reward model! 

Opens up opportunities for anomaly detection for 
generative planners which do not maintain rewards

probability scales anomalies 
w.r.t. deployment context

max
𝒂!

𝑃" 𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶 − 𝑃"(4𝒂! ∣ 4𝒂$":$# , 5𝒔, 𝐶)
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Robot’s planner approximates 
𝑃(𝑎! , 𝑎#|𝑠)	via a generative 
model (VAE)



Illustrative Example



Original Conversation: 8𝒂(, 8𝒂! , 9𝒔, 𝐶 ∈ 𝒟

9𝑎%#

9𝑎%!

9𝑎%!

9𝑎%#



Original Conversation: 8𝒂(, 8𝒂! , 9𝒔, 𝐶 ∈ 𝒟

9𝑎%#

9𝑎%!

9𝑎%!

9𝑎%#



Original Conversation: 8𝒂(, 8𝒂! , 9𝒔, 𝐶 ∈ 𝒟

9𝑎%#

9𝑎%!

9𝑎%!

9𝑎%#



Original Conversation: 8𝒂(, 8𝒂! , 9𝒔, 𝐶 ∈ 𝒟

9𝑎%#

9𝑎%!

9𝑎%!

9𝑎%#



(Approximate) Counterfactual Optimization:  max
𝒂"

𝑃' 𝒂( ∣ 8𝒂! , 9𝒔, 𝐶



(Approximate) Counterfactual Optimization:  max
𝒂"

𝑃' 𝒂( ∣ 8𝒂! , 9𝒔, 𝐶



(Approximate) Counterfactual Optimization:  max
𝒂"

𝑃' 𝒂( ∣ 8𝒂! , 9𝒔, 𝐶



Prediction errors
𝑃2

All deployment data

What value does this data hold 
for incrementally improving? 

“System-level” errors
(i.e., high-regret)

𝜋;

𝑃9 𝑃9:



Future opportunities beyond autonomous driving domain….
anomaly detection, informed data augmentation, model robustification…



[Waymo, 2023] [Ren, AZ et al., 2023]

[Kedia et al., 2023] [DeepMind, 2023]

More work to be done so autonomous robots can interact reliably at scale
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(5 min) Course Eval Survey! J 
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