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Last time we endedbyderiving a maximum Entropy model of
how likelydiff human tray i e demonstrations are given a reward
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If we want to simulate human behavior under a particularrewardparam

we just sample from the distribution
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Another important but often overlooked parameter of this model

Boltzmannmodel is the temperature antier β
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Here β 0 0 controls how optimally the human is expected to behave

under the reward function RHI
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Ok now we understand how the reward paran t of our predictive
model influences our expectations of the human's behavior as well asβ
BUT how do we infer the 0 from data

TWO APPROACHES
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This is an intuitive gradient update rule to minimize difference between

the demonstrated feature counts the expected feature conts under

the estimated tray distribution
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This uncertainty estimate 0 can be used prediction time
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let's parameterize our predictive model wa t but 0 isn't rewardparan

it's now the weights of a NN

Polx't get
Fi

simplest first pass iii t iii
D 9 92 9N

my
it

msn.it in



DEI

Once again we have trouble w multimodalityhere
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2 Uncertainty over intent
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