
A Appendix

A.1 Pursuer capture time as a function of train vs. test evader

Figure 7: Each pursuer policy is trained on a unique distribution of evader behavior—random,
MARL, or zero-sum game-theoretic—and deployed to interact with each other possible evader. The
plots reveal how pursuer policies trained on more optimal but less diverse behavior “overfit” to those
types of maneuvers. For example, consider the top-right where the pursuer policy is trained against
a game theory evader but tested against the random evader. The random evader does not explicitly
strategize, but the capture time distribution of the game-theory policy mirrors the distribution when
interacting with the game-theoretic evader (Fig. 4).

A.2 Simulation & training details

Quadruped High & Low-level Control. The quadruped uses a pre-computed low-level controller

for walking, and is just learning a high-level strategic policy. In this way, our method is agnostic
to the specific low-level controller. We use an off-the-shelf RL-based approach to train a walking
policy [46]. We use this policy during all simulation experiments and during training the high-level
strategic policy. The high-level policy we present in this work controls linear and angular velocity,
up = [vpx, v

R
θ ] ∈ Up. The control inputs are bounded: vpx ∈ [0, 3]ms and vpθ ∈ [−2, 2] rads . Note that

the pursuer has a ∼ 17% linear speed advantage over the evader (detailed in Appendix A.3).

Optimization Details. The episode length for interactions in the Isaac Gym simulator is always

T = 20s. The high-level quadruped policy runs at 5 Hz, and simulates a new control applied every
δt = 0.2s. The low-level quadruped policy runs at 50 Hz. We use the Adam optimizer for both
PPO and for DAGGER. We use Exponential Linear Unit (ELU) activations for the policy network
and for the encoders. The future state trajectory of the evader is always N = 4s = 8 steps. We train
the teacher policies with 3, 000 environments, and the student policy with 8, 000 environments. We
always train the high level policy on flat terrain in an infinite plane. Otherwise, we use all the default
parameters from [46] but remove the cross-entropy loss during PPO.

12



A.3 Evader simulation & policy design

We simulate the evader as a unicycle dynamical system, controlling linear and angular velocity,
ue = [vex, v

e
θ] ∈ Ue. The control inputs are bounded: vex ∈ [0, 2.5]ms and veθ ∈ [−2, 2] rads . The

discrete-time dynamics model we use is:p
e
x
pey
pez
θe
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The evader’s initial condition is randomly initialized at the start of each episode and after each
environment reset. Specifically, the initial xy-position of the evader is offset from the pursuer initial
xy-position via p
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 ,
where r0 ∼ Unif[2, 6] is drawn uniformly at random between 2 and 6 meters, and ψ0 ∼ Unif[−π, π]
so that the evader spawns at random angles relative to the pursuer. The z-position is always fixed at
0.001 and the yaw angle θe is chosen so the evader is facing away from the pursuer at the start of
the episode.

A.3.1 Dubins’ policy

This evader always moves in Dubins’ paths [47] with a fixed time duration for turning or going
straight determined randomly upon the start of the episode. Let vex ∈ [vx, v̄x] be the min and max
linear velocity commands and veθ ∈ [vθ, v̄θ] be the min and max angular velocity commands. Let
τfwd be the number of seconds for which the evader goes forward, and τturn be the number of
seconds to turn. At the start of the episode, each parameter is sampled from the corresponding
uniform distribution:

τfwd ∼ Unif[2, 4], τturn ∼ Unif[0.6, 1.4].

The Dubins’ policy switches between two maneuvers depending on if the current time t matches the
time interval τfwd or τturn:

• τfwd: evader goes forward at max linear velocity, applying ue = [v̄x, 0]

• τturn: evader turns while moving at max linear velocity. With 70% probability the evader
turns the opposite direction as the last turn, and with 30% turning the same direction as last
time): ue = [v̄x, v̄θ] or ue = [v̄x, vθ]

At the start of the episode, the evader uniformly at random chooses to turn left or right.

A.3.2 Random policy

This evader, πe
rand(t), randomly samples a motion primitive to apply for a fixed number of seconds,

before re-sampling another motion primitive. The set of motion primitives MP are the Cartesian
product of regularly discretized linear and angular velocities:

Vx = [vx, 0.5vx, 0, 0.5v̄x, v̄x], Vθ = [vθ, 0.5vθ, 0, 0.5v̄θ, v̄θ], MP := Vx × Vθ

At the start of each episode, the duration for applying a motion primitive is randomly sampled to
be between 1 − 3 seconds. When it is time to switch motion primitives, πe

rand(t) ≡ (vx, vθ) ∼
Unif[MP].
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A.3.3 MARL policy

This evader, πe
marl(x

rel
t ), is trained to evade a pre-trained pursuer policy, equivalent to a single

iteration of [19]. The evader is rewarded for maximizing the distance between the two agents at
each timestep, and obtains a termination penalty upon capture:

Evasion: rt = 2 · ||xet − xpt ||22, Capture: rT = −80 · 1{||xeT − xpT ||22 ≤ 0.8}. (4)

The evader trains against a pre-trained, fully-observable pursuer policy: π∗(xrel, zt). This pursuer
was originally trained against a random evader, πe

rand(t). Since the pursuer is pre-trained, its policy
is already highly capable of capturing the evader making it difficult for the MARL agent to learn. To
tackle this, we use a curriculum set at where at each fixed iteration, the pursuer speed in increased
by 20%. The curriculum is set to [1800, 2000, 2400, 2800, 3100, 3800] iterations.

Figure 8: Global and relative coordinate system with respect to the pursuer’s coordinate frame.

A.4 Zero-sum game policies: pursuer and evader

For one of our candidate fully-observable supervisor policies, we use an off-the-shelf zero sum
differential game solver [17, 48]. It computes the optimal value of the two-player game, V (xrel, t)
at each time t ∈ [0, T ] via solving the Hamilton-Jacobi Isaacs Partial Differential Equation, whose
solution yields optimal game-theoretic policies for both the pursuer and the evader. Each agents’
state is their global position and their heading angle: xi := [pix, p

i
y, θ

i]⊤, i ∈ {p, e} (see Fig. 8).
Each agent controls their linear and angular yaw velocity: ui := [vix, v

i
θ] ∈ U i and the dynamics

evolve via a unicycle model: ṗixṗiy
θ̇i

 =

vix cos(θi)vix sin(θ
i)

viθ

 . (5)

Each agent’s policy is defined in their respective relative coordinate system (see Fig. 8 for relative
coordinate system in pursuer’s body frame). From the perspective of the pursuer, the relative state
xrel := [prelx , prely , θrel]⊤ consists of the relative xy-position and heading:

θrel := θe − θp,

[
prelx

prely

]
:=

[
cos(θp) sin(θp)
− sin(θp) cos(θp)

] [
pex − ppx
pey − ppy

]
(6)

The continuous-time relative dynamics of the evader in the pursuer’s body frame is defined by:ṗrelx

ṗrely

θ̇rel

 =

−vpx + vex cos(θ
rel) + vpθp

rel
y

vex sin(θ
rel)− vpθp

rel
x

veθ − vpθ

 := f(xrel, up, ue). (7)
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Note that when solving the game, the dynamics models are assumed to be deterministic.

The game is solved over the same time horizon as the episode length in the Isaac Gym simulator:
T = 20s. The pursuer’s optimal policy is defined as:

πp
game(x

rel, t) := arg min
up∈Up

max
ue∈Ue

∇V (xrel, t)⊤f(xrel, up, ue), (8)

The evader’s optimal policy is defined similarly with two changes: 1) the relative state xrel is of the
pursuer’s state in the evader’s body frame, and 2) the min and the max are swapped in Eq. 8.

πe
game(x

rel, t) := arg max
ue∈Ue

min
up∈Up

∇V (xrel, t)⊤f(xrel, up, ue). (9)

Note that because the joint dynamics are affine in the pursuer and evader controls, the value of the
game from the pursuer and evader’s perspective is identical (also known as Isaacs’ condition [14]).

Supervising the partially-observable policy. Recall that our approach uses supervision from the

fully-observable policy. The partially-observable policy’s intent estimate, ẑt, is supervised with
the teacher’s intent encoding zt and also the pursuer actions, upt , are supervised with the teacher
policy actions, up,∗t . However, the game-theoretic policy does not generate an explicit latent state
zt the way that the MARL and Random policy architectures do. Thus, we only supervise partially
observable policy’s with the game theory policy πp,∗(xrelt , t) at each timestep and we update the
latent intent encoder E and the policy πp weight’s. In the continual learning of Sec. 5.3 we follow
this same paradigm: finetune the weights of the encoder and the policy from just action supervision.
Otherwise the architecture of the partially observable student policy is identical (LSTM for encoding
with 3-layer MLP for action network).

A.5 Kalman Filter

We use a linear state transition model,

xrelt+δt = Axrelt +Bupt + w

which ignores the role of the evader (i.e., uet ≡ 0) during the the prediction step, and a linear
observation model,

yt = Hxrelt + v.

Note that while the Kalman filter ignores the motion of the evader, the student policy does not.
Indeed, the student policy uses a history of relative states to predict the future evader’s motion
(Fig. 2). We intentionally ignore the evader’s motion in the Kalman filter prediction step to waive
the requirement for a velocity estimator (which can be cumbersome to obtain and noisy in the real
world). While this makes filtering imperfect, we empirically found that the learned policy can cope
with the resulting inaccuracies.

The state transition model assumes the relative state evolves via a single integrator model, assuming
up := [vx, vy, vθ], which directly influence the time derivatives of the relative x, y and θ states. The
quadruped we used in the experiments cannot control vy directly, so at deployment time this entry of
the control input is set to zero. The process covariance w ∼ N (0, Q), the measurement covariance
v ∼ N (0, R), initial error covariance matrix P0, observation matrixH , and state transition matricies
are:

Q = 0.01 · I3×3, R = diag(0.2, 0.2, 0.1), P0 = I3×3, H = I3×3, (10)
A = I3×3, B = diag(−δt,−δt, δt), δt = 0.2 (11)

A.6 Real-world experiments
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Figure 9: Policy architectures for reactive (up left), lookback (low left) and lookahead policy (right).

We use an Unitree A1 robot and a Unitree Go1 robot for experiments. The policy controls the
linear speed of the robot on the x-axis in the body frame, i.e., in the forward direction (vx), and the
angular yaw velocity (vθ). Such high-level commands are executed by an off-the-shelf low-level
policy [4]. We use a Zed 2 camera for object detection in 3D. The object detection pipeline and the
Kalman filter run onboard in a Jetson Tx2, while the low-level controller runs on an Intel UP Board.
Communication happens through ROS using the implementation of [4].

Our policy only controls the pursuer Unitree A1 robot, while the evader is either a human or a Go1
robot teleoperated by a human. In both cases, the evader policy is neither pre-scripted nor explicitly
strategic. The evader tries to avoid the pursuer with short-horizon evasion maneuvers, but it is not
strategic in a long horizon to keep the interaction spatially constrained. We switch between tracking
a person and another robot by changing the tracking class from PERSON to ANIMAL in the ZED
2 camera configs. We assume that only a single evader is present in the scene; therefore, we do not
keep track of object identity. We empirically find that the ANIMAL class has more mis-detections
than the PERSON class since the visual features of the quadruped differ from a real dog. Still, the
detection performance was sufficient for continuous interaction.

A.7 Section 5.1 details: Reactive, Lookback, Lookahead policies

All policies use the same simulation setup as in Sec. A.2. The main differences are in the inputs
and in the latent intent learning. Fig. 9 visualizes the policy architectures for the reactive, lookback
and lookahead policies. We also compare training time of our lookahead approach–which uses
future trajectory information as privileged info to learn the latent intent–to a lookback policy which
must estimate the latent intent only from a history of relative states via an LSTM. We see that future
trajectory supervision enables 10 times faster training compared to the lookback policy (Fig. 10) as
well as higher overall reward.
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Figure 10: The lookahead policy (orange) converges to a higher reward 10 times faster than the
lookback policy (green)
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A.8 Note on directly learning a strategic pursuer policy with PPO

We tried to directly learn a policy with partial observations, π(x̂t,Σt), using PPO. However, our
policies never got a performance better than random. We believe the main reason to be the difficulty
of the optimization problem. Indeed, such a policy needs to learn at the same time: (1) strategy,
i.e., learning to predict where the evader will be, (2) control, i.e., learning to move towards a desired
location on the x-y plane, and (3) estimation, i.e., learning to reason over the noisy states from the
Kalman filter to get an estimate of the real position of the evader. We empirically found that PPO
fails to do all these tasks simultaneously. However, we found that PPO could easily solve (1) and
(2) if provided with a short-horizon future trajectory of the evader: this corresponds to our fully-
observable training. To reduce sample complexity, we learn (3) using distillation learning, even
though it could as well be trained with a further stage of reinforcement learning. An interesting
venue for future work is to see how to learn such policy directly.
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